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Abstract

A ubiquitous requirement in many practical reinforcement learning (RL) applica-1

tions, including medical treatment, recommendation system, education and robotics,2

is that the deployed policy that actually interacts with the environment cannot3

change frequently. Such an RL setting is called low-switching-cost RL, i.e., achiev-4

ing the highest reward while reducing the number of policy switches during training.5

Despite the recent trend of theoretical studies aiming to design provably efficient6

RL algorithms with low switching costs, none of the existing approaches have been7

thoroughly evaluated in popular RL testbeds. In this paper, we systematically stud-8

ied a wide collection of policy-switching approaches, including theoretically guided9

criteria, policy-difference-based methods, and non-adaptive baselines. Through10

extensive experiments on a medical treatment environment, the Atari games, and11

robotic control tasks, we present the first empirical benchmark for low-switching-12

cost RL and report novel findings on how to decrease the switching cost while13

maintain a similar sample efficiency to the case without the low-switching-cost14

constraint. We hope this benchmark could serve as a starting point for developing15

more practically effective low-switching-cost RL algorithms. We release our code16

and complete results in https:// sites.google.com/view/ low-switching-cost-rl.17

1 Introduction18

Reinforcement Learning (RL) has been successfully applied to solve sequential-decision problems in19

many real-world scenarios, such as medical domains [15], robotics [7, 11], hardware placements [19,20

18], and personalized recommendation [27]. In these scenarios, it is often desirable to restrict the21

agent from adjusting its policy too often due to the high costs and risks of deployment. For example,22

changing a policy in medical domains requires a thorough approval process by human experts [2];23

changing policies on robots can be associated with additional risks [7]. In these settings, it is a24

requirement that the deployed policy, i.e., the policy used to interact with the environment, could25

keep unchanged as much as possible. Formally, we would like our RL algorithm to both produce a26

policy with the highest reward and at the same time reduce the number of deployed policy switches27

(i.e., a low switching cost) throughout the training process.28

Offline reinforcement learning [14] is perhaps the most related framework in the existing literature29

that also has a capability of avoiding frequent policy deployment. Offline RL assumes a given30

transition dataset and performs RL training completely in an offline fashion without interacting31

with the environment at all. [17] adopt a slightly weaker offline assumption by repeating the offline32
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training procedure, i.e., re-collecting transition data using the current policy and re-applying offline33

RL training on the collected data, for about 10 times. However, similar to the standard offline RL34

methods, due to such an extreme low-deployment-constraint, the proposed method suffers from a35

particularly low sample efficiency and even produces significantly lower rewards than online SAC36

method in many cases [17]. In contrast with offline RL, which optimizes the reward subject to a37

minimal switching cost, low-switching-cost RL aims to reduce the switching cost while maintain a38

similar sample efficiency and final reward compared to its unconstrained RL counterpart.39

In low-switching-cost RL, the central question is how to design a criterion to decide when to update40

the deployed policy based on the current training process. Ideally, we would like this criterion to41

satisfy the following four properties:42

1. Low switching cost: This is the fundamental mission. An RL algorithm equipped with this43

policy switching criterion should have a reduced frequency to update the deployed policy.44

2. High reward: Since the deployed policy can be different from the training one, the collected45

data can be highly off-policy. We need this criterion to deploy policies at the right timing so46

that the collected samples can be still sufficient for finally achieving the optimal reward.47

3. Sample efficiency: In addition to the final reward, we also would like the algorithm equipped48

with such a criterion to produce a similar sample efficiency to the unconstrained RL setting49

without the low-switching-cost requirement.50

4. Generality: We would like this criterion can be easily applied to a wide range of domains51

rather than a specific task.52

From the theoretical side, low-switching-cost RL and its simplified bandit setting have been exten-53

sively studied [3, 5, 4, 21, 6, 25, 26]. The core notion in these theoretical methods is information54

gain. Specifically, they update the deployed policy only if the measurement of information gain is55

doubled, which also leads to optimality bounds for the final policy rewards. We suggest the readers56

refer to the original papers for details of the theoretical results. We will also present algorithmic57

details later in Section 4.4.58

However, to our knowledge, there has been no empirical study on whether these theoretically-guided59

criteria are in fact effective in popular RL testbeds. In this paper, we aim to provide systematic60

benchmark studies on different policy switching criteria from an empirical point of view. Our61

contributions are summarized below.62

Our Contributions63

• We conduct the first empirical study for low-switching-cost RL on environments that require64

modern RL algorithms, i.e., Rainbow [9] and SAC [8], including a medical environment, 5665

Atari games1 and 6 MuJoCo control tasks. We test theoretically guided policy switching66

criteria based on the information gain as well as other adaptive and non-adaptive criteria.67

• We find that a feature-based criterion produces the best overall quantitative performance.68

Surprisingly, the non-adaptive switching criterion serves as a particularly strong baseline in69

all the scenarios and largely outperforms the theoretically guided ones.70

• Through extensive experiments, we summarize practical suggestions for RL algorithms with71

with low switching cost, which will be beneficial for practitioners and future research.72

2 Related Work73

Low switching cost algorithms were first studied in the bandit setting [3, 5]. Existing work on RL74

with low switching cost is mostly theoretical. To our knowledge, [4] is the first work that studies this75

problem for the episodic finite-horizon tabular RL setting. [4] gave a low-regret algorithm with an76

O
(
H3SA log (K)

)
local switching upper bound where S is the number of stats, A is the number77

of actions, H is the planning horizon and K is the number of episodes the agent plays. The upper78

bound was improved in [26, 25].79

1There are a total of 57 Atari games. However, only 56 of them (excluding the “surround” game) are
supported by the atari-py package, which we adopt as our RL training interface.
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Offline RL (also called Batch RL) can be viewed as a close but parallel variant of low-switching-cost80

RL, where the policy does not interact with the environment at all and therefore does not incur any81

switching cost. Offline RL methods typically learn from a given dataset [13, 14], and have been82

applied to many domains including education [16], dialogue systems [10] and robotics control [12].83

Some methods interpolate offline and online methods, i.e., semi-batch RL algorithms [22, 13], which84

update the policy many times on a large batch of transitions. However, reducing the switching85

cost during training is not their focus. [17] developed the only empirical RL method that tries to86

reduce the switching cost without the need of a given offline dataset. Given a fixed number of policy87

deployments (i.e., 10), the proposed algorithm collects transition data using a fixed deployed policy,88

trains an ensemble of transition models and updated a new deployed policy via model-based RL for89

the next deployment iteration. However, even though the proposed model-based RL method in [17]90

outperforms a collection of offline RL baselines, the final rewards are still substantially lower than91

standard online SAC even after consuming an order of magnitude more training samples. In our work,92

we focus on the effectiveness of the policy switching criterion such that the overall sample efficiency93

and final performances can be both preserved.94

3 Preliminaries95

Markov Decision Process: We consider the Markov decision model (S,A, γ, r, p0, P ), where96

S is the state space, A is the action space, γ is the discounted factor, r : S × A → R is the97

reward function, p0 is the initial state distribution, and P (x′|x, a) denotes the transition probability98

from state x to state x′ after taking action a. A policy π : S → A is a mapping from a state to99

an action, which can be either deterministic or stochastic. An episode starts with an initial state100

x0 ∼ p0. At each step h in this episode, the agent chooses an action ah from π(xh) based on101

the current state xh, receives a reward r(xh, ah) and moves to the next state xh+1 ∼ P (·|xh, ah).102

We assume an episode will always terminate, so each episode e = {(xeh, aeh)|0 ≤ h ≤ He} will103

always have a finite horizon He (e.g., most practical RL environments have a maximum episode104

length Hmax). The goal of the agent is to find a policy π∗ which maximizes the discounted expected105

reward, π? = arg maxπ Ee
[∑He

h=0 γ
hr(xeh, a

e
h)
]
. Let K denote the total transitions that the agent106

experienced across all the episodes during training. Ideally, we also want the agent to consume as107

few training samples as possible, i.e., a minimal K, to learn π?. A Q-function is used to evaluate the108

long-term value for the action a and subsequent decisions, which can be defined w.r.t. a policy π by109

Qπ(x, a) := r(x, a) + E

[∑
h

γhr (xh, π (xh))

∣∣∣∣∣x0 = x, a0 = a

]
. (1)

Deep Off-policy Reinforcement Learning: Deep Q-learning (DQN) [20] is perhaps the most110

popular off-policy RL algorithm leveraging a deep neural network to approximate Q(x, a). Given the111

current state xh, the agent selects an action ah greedily based on parameterized Q-function Qθ(xh, a)112

and maintain all the transition data in the replay buffer.For each training step, the temporal difference113

error is minimized over a batch of transitions sampled from this buffer by114

L(θ) = E
[
(rh+1 + γmax

a′
Qθ̄(xh+1, a

′)−Qθ(xh, ah))2
]
, (2)

where θ̄ represents the parameters of the target Q-network, which is periodically updated from θ.115

Rainbow [9] is perhaps the most famous DQN variant, which combines six algorithmic enhancements116

and achieves strong and stable performances on most Atari games. In this paper, we adopt a117

deterministic version2 of Rainbow DQN as the RL algorithm for the discrete action domains. We118

also adopt count-based exploration [23] as a deterministic exploration bonus.119

For continuous action domains, soft actor-critic (SAC) [8] is the representative off-policy RL algo-120

rithm. SAC uses neural networks parameterized by θ to approximate both Q(s, a) and the stochastic121

policy πθ(a|s). Q-network is trained to approximate entropy-regularized expected return by minimiz-122

ing123

LQ(θ) = E
[
(rh + γ(Qθ̄(xh+1, a

′)− α log π(a′|xh+1))−Qθ(xh, ah))2|a′ ∼ π(·|xh+1)
]
, (3)

2Standard Rainbow adds random noise to network parameters for exploration, which can be viewed as
constantly switching policies over a random network ensemble. This contradicts the low-switching-cost
constraint.
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Algorithm 1 General Workflow of Low-Switching-Cost RL

1: Initialize parameters θonl, θdep, an empty replay buffer D, Cswitch ← 0
2: for k← 0 to K − 1 do
3: Select ak by πdep(xk), execute action ak and observe reward rk, state xk+1

4: Store (xk, ak, rk, xk+1) in D
5: Update θonl using D and an off-policy RL algorithm
6: if J (?) == true then
7: Update θdep ← θonl, Cswitch ← Cswitch + 1
8: end if
9: end for

where α is the entropy coefficient. We omit the parameterization of π since π is not updated w.r.t LQ.124

The policy network πθ is trained to maximize Lπ(θ) = Ea∼π [Q(x, a)− α log πθ(a|x)].125

4 Reinforcement Learning with Low Switching Cost126

In standard RL, a transition (xh, ah, xh) is always collected by a single policy π. Therefore, whenever127

the policy is updated, a switching cost is incurred. In low-switching-cost RL, we have two separate128

policies, a deployed policy πdep that interacts with the environment, and an online policy πonl that is129

trained by the underlying RL algorithm. These policies are parameterized by θdep and θonl respectively.130

Suppose that we totally collect K samples during the training process, then at each transition step131

k, the agent is interacting with the environment using a deployed policy πkdep. After the transition is132

collected, the agent can decide whether to update the deployed πk+1
dep by the online policy πk+1

onl , i.e.,133

replacing θdep with θonl, according to some switching criterion J . Accordingly, the switching cost is134

defined by the number of different deployed policies throughout the training process, namely:135

Cswitch :=

K−1∑
k=1

I{πk−1
dep 6= πkdep} (4)

The goal of low-switching-cost RL is to design an effective algorithm that learns π∗ using K samples136

while produces the smallest switching cost Cswitch. Particularly in this paper, we focus on the design137

of the switching criterion J , which is the most critical component that balances the final reward and138

the switching cost. The overall workflow of low-switching-cost RL is shown in Algorithm 1.139

In the following content, we present a collection of policy switching criteria and techniques, including140

those inspired by the information gain principle (Sec. 4.4) as well as other non-adaptive (Sec. 4.1)141

and adaptive criteria (Sec. 4.2,4.3). All the discussed criteria are summarized in Algorithm 2.142

4.1 Non-adaptive Switching Criterion143

This simplest strategy switches the deployed policy every n timesteps, which we denote as “FIX_n”144

in our experiments. Empirically, we notice that “FIX_1000” is a surprisingly effective criteria which145

remains effective in most of the scenarios without fine tuning. So we primarily focus on “FIX_1000”146

as our non-adaptive baseline. In addition, We specifically use “None” to indicate the experiments147

without the low-switching-cost constraint where the deployed policy keeps synced with the online148

policy all the time. Note that this “None” setting is equivalent to “FIX_1”.149

4.2 Policy-based Switching Criterion150

Another straightforward criterion is to switch the deployed policy when the action distribution151

produced by the online policy significantly deviates from the deployed policy. Specifically, we sample152

a batch of training states and count the number of states where actions by the two policies differ in153

the discrete action domains. We switch the policy when the ratio of mismatched actions exceeds a154

threshold σp. For continuous actions, we use KL-divergence to measure the policy differences.155
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4.3 Feature-based Switching Criterion156

Beyond directly consider the difference of action distributions, another possible solution for measuring157

the divergence between two policies is through the feature representation extracted by the neural158

networks. Hence, we consider a feature-based switching criterion that decides to switch policies159

according to the feature similarity between different Q-networks. Similar to the policy-based criterion,160

when deciding whether to switch policy or not, we first sample a batch of states B from the experience161

replay buffer, and then extract the features of all states with both the deployed deep Q-network and162

the online deep Q-network. Particularly, we take the final hidden layer of the Q-network as the feature163

representation. For a state x, the extracted features are denoted as fdep(x) and fonl(x), respectively.164

The similarity score between fdep and fonl on state x is defined as165

sim(x) =
〈fdep(x), fonl(x)〉

||fdep(x)|| × ||fonl(x)||
. (5)

We then compute the averaged similarity score on the batch of states B166

sim(B) =

∑
x∈B sim(x)

||B||
. (6)

With a hyper-parameter σf ∈ [0, 1], the feature-based policy switching criterion changes the deployed167

policy whenever sim(B) ≤ σf .168

Reset-Checking as a Practical Enhancement: Empirically, we also find an effective implemen-169

tation enhancement, which produces lower switch costs and is more robust across different envi-170

ronments: we only check the feature similarity when an episode resets (i.e., a new episode starts)171

and additionally force deployment to handle extremely long episodes (e.g., in the “Pong” game, an172

episode may be trapped in loopy states and lead to an episode length of over 10000 steps).173

Hyper-parameter Selection: For action-based and feature-based criteria, we uniformly sample174

a batch of size 512 from recent 10,000 transitions and compare the action differences or feature175

similarities between the deployed policy and the online policy on these sampled transitions. We also176

tried other sample size and sampling method, and there is no significant difference. For the switching177

threshold (i.e., the mismatch ratio σp in policy-based criterion and parameter σf in feature-based178

criterion), we perform a rough grid search and choose the highest possible threshold that still produces179

a comparable final policy reward.180

4.4 Switching via Information Gain181

Existing theoretical studies propose to switch the policy whenever the agent has gathered sufficient182

new information. Intuitively, if there is not much new information, then it is not necessary to switch183

the policy. To measure the sufficiency, they rely on the visitation count of each state-action pair or the184

determinant of the covariance matrix. We implement these two criteria as follows.185

Visitation-based Switching: Following [4], we switch the policy when visitation count of any186

state-action pair reaches an exponent (specifically 2i, i ∈ N in our experiments). Such exponential187

scheme is theoretically justified with bounded switching cost in tabular cases. However, it is not188

feasible to maintain precise visitations for high-dimensional states, so we adopt a random projection189

function to map the states to discrete vectors by φ(x) = sign(A · g(x)), and then count the visitation190

to the hashed states as an approximation. A is a fixed matrix with i.i.d entries from a unit Gaussian191

distribution N (0, 1) and g is a flatten function which converts x to a 1-dimensional vector.192

Information-matrix-based Switching: Another algorithmic choice for achieving infrequent pol-193

icy switches is based on the property of the feature covariance matrix [21, 6], i.e., Λeh =194 ∑
e:He≥h ψ(xeh, a

e
h)ψ(xeh, a

e
h)T + λI , where e denotes a training episode, h means the h-th timestep195

within this episode, and ψ denotes a mapping from the state-action space to a feature space. For196

each episode timestep h, [1] switches the policy when the determinant of Λeh doubles. However, we197

empirically observe that the approximate determinant computation can be particularly inaccurate for198

complex RL problems. Instead, we adopt an effective alternative, i.e., switch the policy when the199

least absolute eigenvalue doubles. In practice, we again adopt a random projection function to map200

the state to low-dimensional vectors, φ(x) = sign(A · g(x)), and concatenate them with actions to201

get ψ(x, a) = [φ(x), a].202
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Algorithm 2 Switching Criteria (J in Algorithm 1)

. Non-adaptive Switching
input environment step counter k, fixed switching interval n
output bool(k mod n == 0)

. Policy-based Switching
input deployed and online policy πdep, πonl, state batch B, threshold σp
Compute the ratio of action difference or KL divergence for πdep and πonl on B as δ.
output bool(δ ≥ σp)

. Feature-based switching
input Encoder of deployed and online policy fdep, fonl, state batch B, threshold σf
Compute sim(B) via Eq.(6)
output bool(sim(B) ≤ σf )

. Visitation-based Switching
input the current visited times of state-action pair n(φ(xk), ak)
output bool(n(φ(xk), ak) ∈ {1, 2, 4, 8...})

. Information-matrix-based Switching
input episode timestep h, current covariance matrix Λeh, old Λẽh at previous switch time
Compute the least absolute eigenvalues veh and vẽh
output bool(veh ≥ 2× vẽh)

5 Experiments203

In this section, we conduct experiments to evaluate different policy switching criteria on Rainbow204

DQN and SAC. For discrete action spaces, we study the Atari games and the GYMIC testbed for205

simulating sepsis treatment for ICU patients which requires low switching cost. For continuous206

control, we conduct experiments on the MuJoCo [24] locomotion tasks.207

5.1 Environments208

GYMIC GYMIC is an OpenAI gym environment for simulating sepsis treatment for ICU patients209

to an infection, where sepsis is caused by the body’s response to an infection and could be life-210

threatening. GYMIC built an environment to simulate the MIMIC sepsis cohort, where MIMIC is211

an open patient EHR dataset from ICU patients. This environment generates a sparse reward, the212

reward is set to +15 if the patient recovers and -15 if the patient dies. This environment has 46 clinical213

features and a 5× 5 action space.214

Atari 2600 Atari 2600 games are widely employed to evaluate the performance of DQN-based215

agents [9]. We evaluate the efficiency of different switching criteria on a total of 56 Atari games.216

MuJoCo control tasks We evaluate different switching criteria on 6 standard continuous control217

benchmarks in the MuJoCo physics simulator, including Swimmer, HalfCheetah, Ant, Walker2d,218

Hopper and Humanoid.219

5.2 Evaluation Metric220

For GYMIC and Atari games whose action space is discrete, we adopt Rainbow DQN to train the221

policy; for MuJoCo tasks with continuous action spaces, we employ SAC since it is more suitable222

for continuous action space. We evaluate the efficiency among different switching criteria in these223

environments. All of the experiments are repeated over 3 seeds. Implementation details and hyper-224

parameters are listed in Appendix B. All the code and the complete experiment results can be found225

at https:// sites.google.com/view/ low-switching-cost-rl.226
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Figure 1: Results on GYMIC. Top: the learn-
ing curve of reward vs. steps. Bottom:
switching cost. Note that the switching cost
of “Visitation” almost overlaps with “None”.

Figure 2: Action difference and feature similarity recorded
on Pong. Higher feature similarity or lower action differ-
ence implies that the deployed policy and the online policy
are closer.

We evaluate different policy switching criteria based on the off-policy RL backbone and measure the227

reward function as well as the switching cost in both GYMIC and MuJoCo control tasks. For Atari228

games, we plot the average human normalized rewards. Since there are 56 Atari games evaluated, we229

only report the average results across all the Atari games as well as 8 representative games in the230

main paper. Detailed results for every single Atari game can be found at our project website.231

To better quantitatively measure the effectiveness of a policy switching criterion, we propose a new232

evaluation metric, Reward-threshold Switching Improvement (RSI), which takes both the policy233

performance and the switching cost improvement into account. Specifically, suppose the standard234

online RL algorithm (i.e., the “None” setting) can achieve an average reward of R̂ with switching235

cost Ĉ3. Now, an low-switching-cost RL criterion J leads to a reward of RJ and reduced switching236

cost of CJ using the same amount of training samples. Then, we define RSI of criterion J as237

RSI(J ) = I

[
RJ >

(
1− sign(R̂)σRSI

)
R̂
]

log

(
max

(
Ĉ

CJ
, 1

))
, (7)

where I[·] is the indicator function and σRSI is a reward-tolerance threshold indicating the maximum238

allowed performance drop with the low-switching-cost constraint applied. In our experiments,239

we choose a fixed threshold parameter σRSI = 0.2. Intuitively, when the performance drop is240

moderate (i.e., within the threshold σRSI), RSI computes the logarithm of the relative switching cost241

improvements; while when the performance decreases significantly, the RSI score will be simply 0.242

5.3 Results and Discussions243

We compare the performances of all the criteria presented in Sec. 4, including unconstrained RL244

(“None”), non-adaptive switching (“Fix_1000”), policy-based switching (“Policy”), feature-based245

switching (“Feature”) and two information-gain variants, namely visitation-based (“Visitation”) and246

information-matrix-based (“Info”) criteria.247

GYMIC: This medical environment is relatively simple, and all the criteria achieve similar248

learning curves as unconstrained RL as shown in Fig. 1. However, the switching cost of visitation-249

based criterion is significantly higher – it almost overlaps with the cost of “None”. While the250

other information-gain variant, i.e., information-matrix-based criterion, performs much better in this251

scenario. Overall, feature-based criterion produces the most satisfactory switching cost without hurt252

to sample efficiency.253

Atari Games: We then compare the performances of different switching criteria in the more254

complex Atari games. The state spaces in Atari games are images, which are more complicated than255

3We use Ĉ instead of K here since some RL algorithm may not update the policy every timestep.
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Figure 3: The average results on Atari games. We compare different switching criteria across 56 Atari games
with 3 million training steps. We visualize the human normalized reward on the left. The figure on the right
shows the average switching cost, which is normalized by the switching cost of “None” and shown in a log scale.

the low-dimensional states in GYMIC. Fig. 3 shows the average reward and switching of different256

switching criteria across all the 56 games, where the feature-based solution leads to the best empirical257

performance. We also remark that the non-adaptive baseline is particularly competitive in Atari258

games and outperforms all other adaptive solutions except the feature-based one. We also show the259

results in 8 representative games in Fig. 4, including the reward curves (odd rows) and switching cost260

curves (even rows). We can observe that information-gain variants produce substantially more policy261

updates while the feature-based and non-adaptive solutions are more stable.262

In addition, we also noticed that the policy-based solution is particularly sensitive to its hyper-263

parameter in order to produce desirable policy reward, which suggests that the neural network264

features may change much more smoothly than the output action distribution.265

To validate this hypothesis, we visualize the action difference and feature difference of the uncon-266

strained Rainbow DQN on the Atari game “Pong” throughout the training process in Fig. 2. Note that267

in this case, the deployed policy is synced with the online policy in every training iteration, so the268

difference is merely due to a single training update. However, even in a unconstrained setting, the269

difference of action distribution fluctuates significantly. By contrast, the feature change is much more270

stable. We also provide some theoretical discussions on feature-based criterion in Appendix C.271

Figure 4: The results on several representative Atari games. In each environment, we visualize the training
reward over the steps on the top and the switching cost in a log scale at the bottom.

MuJoCo Control: We evaluate the effectiveness of different switching criteria with SAC on all the272

6 MuJoCo continuous control tasks. The results are shown in Fig. 5. In general, we can still observe273
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Figure 5: The results on MuJoCo tasks.

that the feature-based solution achieves the lowest switching cost among all the baseline methods274

while the policy-based solution produces the most unstable training. Interestingly, although the non-275

adaptive baseline has a relatively high switching cost than the feature-based one, the training curve276

has the less training fluctuations, which also suggests a future research direction on incorporating277

training stability into the switching criterion design.278

Table 1: RSI (Eq. 7, σ = 0.2) for different criteria over different domains. We take unconstrained RL (i.e.,
“None”) performance as the RSI reference, so the RSI value for “None” is always zero.

Avg. RSI Feature Policy Info Visitation FIX_1000

GYMIC 9.63 4.16 8.88 0.0 6.91
Atari 3.61 2.82 2.11 1.81 3.15

Mujoco 8.20 3.45 4.83 1.92 6.91

Average RSI Scores: Finally, we also report the RSI scores of different policy switching criteria on279

different domains. For each domain, we compute the average value of RSI scores over each individual280

task in this domain. The results are reported in Table 1, where we can observe that the feature-based281

method consistently produces the best quantitative performance across all the 3 domains.282

6 Conclusion283

In this paper, we focus on low-switching-cost reinforcement learning problems and take the first284

empirical step towards designing an effective solution for reducing the switching cost while maintain-285

ing good performance. By systematic empirical studies on practical benchmark environments with286

modern RL algorithms, we find the existence of a theory-practice gap in policy switching criteria and287

suggest a feature-based solution can be preferred in practical scenarios. Thanks to the strong research288

nature of this work, we believe our paper does not produce any negative societal impact.289

We remark that our paper not only provides a benchmark for future research but also raises many290

interesting methods. For example, although feature-based solution achieves the best overall perfor-291

mance, it does not substantially outperform the the naive non-adaptive baseline. It still has a great292

research room towards designing a more principled switching criteria. Another direction is to give293

provable guarantees for these policy switching criteria that work for methods dealing with large state294

space in contrast to existing analyses about tabular RL [4, 26, 25]. We believe our paper is just the295

first step on this important problem, which could serve as a foundation towards great future research296

advances.297
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