
Reincarnating Reinforcement Learning Workshop at ICLR 2023

SELF-GENERATING DATA FOR GOAL-CONDITIONED
COMPOSITIONAL PROBLEMS

Ying Yuan1, Yunfei Li1, Yi Wu1,2

1Institute for Interdisciplinary Information Sciences, Tsinghua University; 2Shanghai Qi Zhi Institute

ABSTRACT

Building reinforcement learning agents that are generalizable to compositional
problems has long been a research challenge. Recent success relies on a pre-
existing dataset of rich behaviors. We present a novel paradigm to learn poli-
cies generalizable to compositional tasks with self-generated data. After learning
primitive skills, the agent runs task expansion that actively expands out more com-
plex tasks by composing learned policies and also naturally generates a dataset of
demonstrations for self-distillation. In a proof-of-concept block-stacking environ-
ment, our agent discovers a large number of complex tasks after multiple rounds
of data generation and distillation, and achieves an appealing zero-shot general-
ization success rate when building human-designed shapes.

1 INTRODUCTION

Human everyday life involves many compositional decision-making problems that are composed of
a sequence of subtasks. Developing intelligent agents with human-like capabilities of generalizing
to a large number of compositional problems still poses challenges for reinforcement learning (RL).

Recent advances in reinforcement learning from offline datasets have demonstrated some general-
ization ability to unseen and long-horizon tasks (Lynch et al., 2020; Chebotar et al., 2021; Fang
et al., 2022b). However, the generalization relies on a pre-collected dataset with good coverage of
rich behaviors (Ebert et al., 2021; Jang et al., 2022), which may not be easily scaled to compositional
problems with a combinatorially large space. Therefore, it is natural to ask can we develop an agent
that self-generates datasets to teach itself how to solve compositional tasks?

We introduce a novel way to solve compositional problems by iteratively generating data for self-
teaching. In particular, we focus on the goal-conditioned RL setting (KAELBLING, 1993). Initially,
we only provide the agent with demonstrations for learning primitive skills, e.g., interacting with a
single object. The agent then self-generates a dataset of trajectories demonstrating more complex
tasks by composing previously learned skills and distills such compositional data into its policy.
After multiple rounds of data generation and distillation, the agent gradually masters a broad range
of compositional tasks and can achieve non-trivial zero-shot generalization on complex problems.

To progressively generate compositional datasets, we propose a technique called task expansion that
expands out more complex trajectories from already learned policies. Given a successful trajectory
with initial state s0 and terminal state sT , task expansion generates new data by executing the current
policy from sT to a new goal g and appending the rollouts to the original trajectory. The new goal g is
selected to be out of reach from s0 while easy to reach from sT under the current policy. Therefore,
the self-generated dataset contains demonstrations for solving currently unreachable tasks with a
higher level of compositionality (from s0 to g). Our agent can then distill the strategies from the
generated dataset to its policy to augment its ability for tackling compositional problems.

We experiment on a multi-object block-stacking domain. Starting from a dataset of trajectories
containing single-object interaction only, our method can achieve a non-trivial success rate on zero-
shot evaluation tasks after several rounds of expansion.

2 PRELIMINARY

We implement task expansion on a sparse-reward long-horizon environment called the multi-object
block-stacking domain, where n cuboid blocks are randomly placed on a desk initially and the task

1

Reincarnating Reinforcement Learning Workshop at ICLR 2023

is accomplished only when all m goal objects are rearranged to their target positions stably. The
goal positions can be in the air, which requires some non-target blocks stacked below the goals.

We consider the setting of goal-conditioned Markov decision process with 0/1 sparse rewards, which
is (S,A, P (s′|s, a),G, T , r(s, a, g), γ). S is the state space, including the poses and the velocities
of all the objects. A is the action space. In this work, each action selects one object and its desired
pose and directly teleports that object. G is the goal space indicating the desired positions and IDs
of a varying number of objects. P (s′|s, a) indicates the probability of the transition from state s to
state s′ after taking action a, and γ is the discounted factor. The reward function r(s, a, g) is 1 only
if the goal g is reached stably at the current state s within some precision threshold and otherwise
0. T is the task space represented as a set of paired initial states s0 and goals g from which to reset
each episode. T varies among different rounds of task expansion. An episode terminates when
either the goal is achieved or it reaches a maximum number of steps.

We adopt an actor-critic algorithm as the backbone RL agent, which trains a goal-conditioned policy
πθ(a|s, g) parametrized by θ and a universal value function (Schaul et al., 2015) Vφ(s, g). The
objective of the RL agent is to find an optimal θ⋆ that maximizes expected accumulated reward over
the current task space, θ⋆ = argmaxθ ET [

∑
t γ

tr(st, at, g)], at ∼ πθ(·|st, g), (s0, g) ∼ T .

3 METHOD

Our solution consists of three parts, including base policy learning, task expansion to generate com-
positional datasets, and policy distillation from the dataset. Once the base policy is learned, we
alternatively operate task expansion and self-distillation so that our agent gradually teaches itself to
handle more challenging tasks.

3.1 LEARNING THE BASE POLICY

We aim to teach the agent primitive skills that could be further composed to solve complex problems
in this phase. In the object manipulation domain we consider in this work, a natural choice is learning
to interact with every single object. To this end, we collect a dataset of trajectories that only require
transporting one object to reach success. The trajectories are actually single-step transitions since
our action space directly works on the object level. We then train the policy using behavior cloning
and finetune the policy with PPO Schulman et al. (2017) over all the tasks contained in the dataset.

3.2 TASK EXPANSION FOR DATA GENERATION

In order to generate datasets for learning more complex tasks than the initial ones specified in the
base policy learning phase, we propose the task expansion method, which consists of prospective
task sampling, value-based task selection, and data augmentation.

In the i-th round of task expansion, we collect successful data trajectories using the policy check-
point and the task buffer of the last round (the base policy and the initial tasks if i = 1). For each
successful data trajectory, we randomly sample a set of K new tasks under the uniform distribution
of the number of goals, the positions of the goals, and the object indices corresponding to the goals,
with the restriction that the newly sampled tasks should have only one alteration compared to the
original task, i.e., either adding one goal or modifying one existing goal. We also experiment with
a restriction-free version as an ablation, and we expect that the restriction helps the agent explore
novel tasks more stably and well-organized.

To select from prospective tasks, given the initial state s0 and the final state sT of each successful
data trajectory, our main idea is to find a task g∗ that is relatively easy for the agent to accomplish
starting from sT but relatively hard starting from s0. In other words, both subtasks s0 → sT and
sT → g∗ should be solvable by the current policy, while the task si → g∗ is not trivial. Our
implementation selects the best new goal g∗ based on a metric defined over the universal value
function Vφ(s, g) by

g∗ = argmax
g

Vφ(sT , g)− Vφ(s0, g). (1)

We also experiment with other value-based selection metrics as an ablation.

After selecting the new goal g∗, we verify whether it can be reached from sT by executing the
current policy in the environment. If the execution is successful, we can get a demonstration for
the task s0 → g∗. Otherwise, we relabel the whole trajectory as targeting the state where the failed

2

Reincarnating Reinforcement Learning Workshop at ICLR 2023

Figure 1: Distribution of maximum heights (mh)
of generated tasks during task expansion.

Figure 2: Distribution of the number of goals of
generated tasks during task expansion.

execution ends up. Such relabeling boosts data efficiency and guarantees that all the generated tasks
can be accomplished starting from the original final state in the collected data trajectories.

3.3 LEARNING GENERATED TASKS WITH SELF-DISTILLATION

After collecting a dataset D of trajectories to solve newly generated tasks, we run behavior cloning
(BC) to distill into the policy. Since previous successful trajectories are repurposed as good prefixes
to solve more complex problems in D, BC on this dataset effectively teaches the agent to break down
hard tasks using previous policies. In our environment, we empirically find that newly proposed
tasks tend to have higher goals on top of the existing objects, so the data trajectories hint at setting
up the base objects to accomplish the high goals in the air. We again adopt PPO (Schulman et al.,
2017) to finetune our policy on generated tasks so as to revise minor errors after BC due to the fact
that some trajectories may include detours and are not exactly the prefix of novel tasks.

4 EXPERIMENT

In this section, we report the preliminary results of our self-generation paradigm in a block-stacking
domain. We present how our method gradually generates more compositional data with multiple
rounds of expansion and achieve non-trivial zero-shot generalization performance.

In our implementation, we set the maximum number of goals as the total number of cuboid blocks n.
In order to familiarize the agent with a broader variety of initial tasks, we also create some multiple-
goal tasks based on the original one-goal tasks by assigning additional goals to be the object indices
and current positions of certain non-goal objects, which we expect the agent can handle using the
base policy checkpoint. Note that the number of goals m in such tasks is set to be no larger than
3, so we can test the generalization ability of our method and verify that the agent can explore and
learn novel tasks with more goals to achieve that have not been seen during training.

4.1 STATISTICS OF TASK EXPANSION

We summarize the statistics of generated tasks in each round of the task expansion process. Figure 1
shows the distribution of the maximum height of the multiple goals in each task for each round of
task expansion respectively, which presents a tendency towards higher goals as the number of rounds
increases. Figure 2 shows the distribution of the number of goals in generated tasks for each round,
which indicates the number of goals gets larger as our algorithm proceeds. Note that our initial task
space only contains tasks with no more than 3 goals, while the task expansion process finds a large
proportion of tasks with 3 or 4 goals, and even some with 5 goals. Our agent manage to achieve a
99% success rate on the generated tasks in each round within 150M timesteps of PPO tuning. As
is shown in Table 1, the number of “high goals” proliferates in the third expansion and the mean

rd. # high goals ep len mean

1 12 2.5
2 18 5
3 938 7.6

Table 1: Statistics of generated tasks in different
rounds of task expansion. “# high goals” is the
number of tasks with at least 3 goals above ground;
“ep len mean” is the mean episode length.

rd. “I” sr. “Y” sr. “3T” sr.

1 93.7% 1.5% 58.2%
2 95.6% 33.5% 93.5%
3 89.3% 43.8% 98.2%

Table 2: Success rate of zero-shot evalua-
tion on manually designed tasks using policies
trained in different rounds of task expansion.

3

Reincarnating Reinforcement Learning Workshop at ICLR 2023

(a) I-shape (b) Y-shape

(c) 3T-shape

Figure 3: Visualization of three categories of held-out evaluation tasks.

episode length scales up gradually, showing that the generated tasks are not trivial and become more
complicated in each round of exploration.

4.2 ZERO-SHOT GENERALIZATION TO HELD-OUT TASKS

After several rounds of task expansion and self-teaching, we test whether our agent can generalize to
compositional tasks that are never provided to it before. Specifically, we design three categories of
evaluation goals, the “I-shape”, the “Y-shape” and the “3T-shape”, as shown in Figure 3, and test the
agent from initial states with all blocks randomly scattered on the desk. The policy checkpoints tuned
for 150M timesteps after each round of task expansion are selected for evaluation. Each checkpoint
is tested for 4096 environment steps for each category of goals. As is reported in Table 2, the zero-
shot performance on the three categories of held-out tasks gets better in later rounds. Empirically,
our agent is not an expert at stacking high goals, which needs to build bases first, but later it can
handle such tasks. The strategy of our agent is illustrated in Figure 3.

4.3 ABLATION STUDIES AND COMPARISONS

Methods “I” sr. “Y” sr. “3T” sr.

w/o restr. 0.3% 4.1% 38.7%
init2new 7.3% 0.0% 0.0%
end2new 79.4% 20.3% 59.4%

ours 93.7% 1.0% 58.2%

Table 3: Zero-shot evaluation success rates of
different design choices. All variants use the
policies tuned for 150M timesteps after the first
round of task expansion for evaluation.

We try a naive approach that directly trains over
the evaluation tasks with PPO after learning the
base policy. The success rate is always zero
in 137M timesteps. Therefore, task expansion
can be viewed as an automatic curriculum that
smooths out the challenges of directly optimizing
compositional problems under sparse reward.

We experiment with removing the restriction of
only allowing one goal to be different from the
original task, that is, sampling new goals ran-
domly in the goal space (“w/o restr.”). As shown in Table 3, it performs worse than our presented
method, possibly because goal sampling with the restriction could generate more feasible tasks.

We study other metrics to select the best new goal in task expansion by choosing argmaxg Vφ(sT , g)
(“end2new”) or argming Vφ(s0, g) (“init2new”). As is shown in Table 3, “init2new” generalizes
significantly worse, while “end2new” achieves comparable performance with our metric. These
results imply that generating new tasks that are feasible by composing previous policies is more
critical to the success of the self-generation paradigm than simply creating challenging novel tasks.

5 CONCLUSION

We present a framework that allows an RL agent that automatically generates datasets using its al-
ready learned skills to teach itself how to solve compositional problems. The key technique, task
expansion, enables generating more complex tasks and their solutions by composing previously
learned tasks. With self-distillation from the generated solutions, our agent can gradually learn to
solve problems with stronger compositionality, and achieves promising zero-shot evaluation perfor-
mance in a sparse-reward block-stacking domain. We are still working to extend this framework to
more realistic domains such as robotic manipulation, and we believe leveraging self-generated data
is a promising direction for scaling up RL to the complexities of real-world problems.

4

Reincarnating Reinforcement Learning Workshop at ICLR 2023

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex
Irpan, Benjamin Eysenbach, Ryan C Julian, Chelsea Finn, et al. Actionable models: Unsupervised
offline reinforcement learning of robotic skills. In International Conference on Machine Learning,
pp. 1518–1528. PMLR, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic
skills with cross-domain datasets. arXiv preprint arXiv:2109.13396, 2021.

Kuan Fang, Patrick Yin, Ashvin Nair, and Sergey Levine. Planning to practice: Efficient online
fine-tuning by composing goals in latent space. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4076–4083. IEEE, 2022a.

Kuan Fang, Patrick Yin, Ashvin Nair, Homer Rich Walke, Gengchen Yan, and Sergey Levine. Gen-
eralization with lossy affordances: Leveraging broad offline data for learning visuomotor tasks.
In 6th Annual Conference on Robot Learning, 2022b. URL https://openreview.net/
forum?id=esOrVR_8-rc.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

LP KAELBLING. Learning to achieve goals. In Proc. of IJCAI-93, pp. 1094–1098, 1993.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. Reinforcement
learning: State-of-the-art, pp. 45–73, 2012.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–
1132. PMLR, 2020.

Sebastien Racaniere, Andrew Lampinen, Adam Santoro, David Reichert, Vlad Firoiu, and Timothy
Lillicrap. Automated curriculum generation through setter-solver interactions. In International
Conference on Learning Representations.

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal
generation. Advances in Neural Information Processing Systems, 32, 2019.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

5

https://openreview.net/forum?id=esOrVR_8-rc
https://openreview.net/forum?id=esOrVR_8-rc
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Reincarnating Reinforcement Learning Workshop at ICLR 2023

A RELATED WORK

Offline reinforcement learning Offline RL studies the topic of training an RL agent from a fixed
dataset (Lange et al., 2012; Kumar et al., 2020; Fujimoto & Gu, 2021; Chen et al., 2021). Learning
RL agents from offline datasets that could generalize to unseen and potentially long-horizon com-
positional tasks has attracted much research interest (Lynch et al., 2020; Chebotar et al., 2021; Jang
et al., 2022). A notable line of work learns goal-conditioned agents from a dataset containing rich
and diverse behaviors and could generalize to long-horizon tasks by stitching policies across differ-
ent episodes (Chebotar et al., 2021). Some recent works explicitly train a planner that can compose
goal-conditioned policies to better deal with temporally extended problems (Lynch et al., 2020; Fang
et al., 2022a;b). Our method similarly starts from a behavior dataset, but instead of learning from the
initial dataset only, it procedurally creates tasks and the corresponding datasets with a higher level
of compositionally for self-teaching throughout training, which is an under-explored direction.

Curriculum generation A bunch of works in curriculum learning (Bengio et al., 2009) (CL) for
RL studies how to create a curriculum of subgoals/initial states to accelerate the convergence to the
most challenging tasks (Florensa et al., 2017; 2018; Ren et al., 2019; Racaniere et al.). These meth-
ods propose to sample tasks with moderate difficulty for the current agent and result in a curriculum
of tasks from easy to hard. Task expansion is technically similar to goal-generation methods, but
with very distinct settings. CL typically assumes the prior knowledge about the most challenging
tasks, while our agent does not know any targeted tasks a priori. Most goal-generation methods
assume continuity of the difficulty level in the task space, meaning that the neighboring tasks share
similar difficulty levels. However, the assumption may not hold true in strong compositional prob-
lems, where a slight difference in the task could result in significant changes in the task difficulty.

6

	Introduction
	Preliminary
	Method
	Learning the base policy
	Task expansion for data generation
	Learning generated tasks with self-distillation

	Experiment
	Statistics of task expansion
	Zero-shot generalization to held-out tasks
	Ablation studies and comparisons

	Conclusion
	Related Work

