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Abstract— Can a quadrupedal robot perform bipedal motions
like humans? Although developing human-like behaviors is
more often studied on costly bipedal robot platforms, we present
a solution over a lightweight quadrupedal robot that unlocks
the agility of the quadruped in an upright standing pose and is
capable of a variety of human-like motions. Our framework is
with a bi-level structure. At the low level is a motion-conditioned
control policy that allows the quadrupedal robot to track
desired base and front limb movements while balancing on
two hind feet. The policy is commanded by a high-level motion
generator that gives trajectories of parameterized human-like
motions to the robot from multiple modalities of human input.
We for the first time demonstrate various bipedal motions on
a quadrupedal robot, and showcase interesting human-robot
interaction modes including mimicking human videos, following
natural language instructions, and physical interaction.

I. INTRODUCTION

Empowering robots with versatile motions like humans
has been an important research topic to allow them to better
coexist and interact with humans [1]. Developing bipedal
robot systems has attracted much interest since they have an
appealing potential to mimic human behaviors thanks to their
structural similarity to human beings [2]. However, existing
bipedal robots are typically expensive, heavy, and power-
consuming [3], [4], [5]. In contrast, quadrupedal robots
are much cheaper and more lightweight and have recently
demonstrated impressive sporting capabilities in various
domains [6], [7], [8]. This naturally raises an interesting
question: Is it possible for quadrupedal robots to demonstrate
agile human-like motions as an affordable alternative of
humanoid robots?

Enabling a quadrupedal robot to perform agile bipedal mo-
tions poses significant control challenges. Since quadrupedal
robots are designed for dog-like behaviors with four legs
on the ground, they must first stand upright on two feet
from a four-leg pose at rest to unlock the motions of bipedal
creatures. The stand-up procedure requires an agile control
policy to gain enough momentum to swing up the robot and
avoid flipping over at the same time. Furthermore, the bipedal
motions are inherently unstable over common quadrupedal
robots with spherical feet, thus the robot must actively adjust
all its body parts to stay balanced once it stands up. Previous
work utilized external mechanical support for the robot to
stand up [9], while we aim to control a quadrupedal robot
to mimic bipedal motions without any external hardware.

Another notable challenge is how to master a wide range
of human-like motions. Due to the difference in kinematics
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Fig. 1: A quadrupedal robot demonstrates human-like mo-
tions with only hind feet on the ground. The top row shows
the reference human boxing video. The bottom row shows
the robot mimicking the human motion to perform multiple
punches and uppercuts at a high speed.

and dynamics between humans and quadrupedal robots, it
is difficult to directly track human motion capture data
while keeping the quadruped robot balanced [10]. Therefore,
motion encodings that can both represent versatile human-
like behaviors and are also feasible for the embodiment of a
quadrupedal robot require careful design.

In this work, we present a bi-level framework that enables
agile bipedal motions on a quadrupedal robot. At the low
level, we train a motion-conditioned policy with model-free
reinforcement learning (RL) that is capable of balancing
the quadrupedal robot on its two toes while tracking ref-
erence motions at the same time. We represent motions as
a sequence of the desired state of the robot base and end
effectors of the front limbs, which is flexible enough to
encode a spectrum of behaviors and is plausible for the
quadrupedal robot to execute. The policy is trained in a
calibrated simulator and then transferred to the real robot.
At the high level, a motion generator parameterizes human-
like motions from videos or natural language descriptions
into a sequence of desired targets for the low-level policy.

We demonstrate the whole framework on an affordable
quadruped platform Xiaomi CyberDog2 (∼$1800) [11] and
showcase the successful deployment of a variety of agile
bipedal maneuvers and interactions with humans such as
mimicking human videos to practice boxing (Fig. 1) and
ballet dance, greeting commanded by natural language in-
structions, and walking hand-in-hand with a human. To the
best of our knowledge, these agile bipedal motions are made
possible on a quadrupedal robot for the first time.



II. RELATED WORK

Learning agile skills with quadrupedal robots: There
has been tremendous progress in training a variety of agile
skills on quadrupedal robot platforms with reinforcement
learning, such as jumping over obstacles [12], [13], [14],
[15], [16], landing [17], soccer shooting [8], and goalkeep-
ing [18], but the motions are mainly with four legs on the
ground. Only a few works study the possibility of bipedal
motions on quadrupedal robots [19], [16]. Besides standing
up and locomotion, we consider a wider range of motions
that involve the base and hand movements to make more
interesting interactions with humans. [20] trained a wheeled-
legged robot to stand up and navigate and [9] used an
external mechanical support to stand up, while we work on
a canonical quadrupedal robot without special hardware.

As for learning robot motions, one popular line of work
is motion imitation from reference trajectories. These works
either directly mimic the reference motions [21], [22] or
adopt an adversarial approach [23] to produce motions with
the same style as the source dataset [24], [25], [26]. Another
research direction is to smartly parameterize motions of
interest and track them with reward engineering [8], [18],
[27]. Since the reference trajectories of bipedal motions
for quadrupeds are not readily available, we choose to
parameterize the motions using the base and front limb
movements, which is versatile enough to represent a broad
range of bipedal motions.

Developing controllers for bipedal motions: Traditional
model-based methods like model predictive control [28], [29]
and trajectory optimization [30], [31] can obtain bipedal
walking controllers that follow predefined gaits. They re-
quire accurate modeling of the robot dynamics and state
estimation, and run intensive optimization online to achieve
good performances. Model-free reinforcement learning (RL)
is another direction to obtain such controllers that alleviates
the burden of heavy engineering in dynamics modeling and
has demonstrated superior performance in bipedal velocity
following [32] and jumping [33]. In this work, we develop
a model-free RL method to learn bipedal skills, but over
an affordable quadrupedal robot that is not specialized for
bipedal motions. We also work beyond locomotion tasks and
demonstrate more versatile motions after freeing the robot’s
front limbs from walking.

Sim-to-real transfer: Domain randomization is a power-
ful technique to bridge the sim-to-real gap when deploying
a policy trained in simulation to a real robot [34], [35], [36].
The applied randomization range typically requires expertise
to design [37]. System identification using real data is
another direction [38], [39], such as learning a motor model
to fit its complex dynamics [40]. There are also works that
iteratively calibrate the simulator using learned trajectories
and optimize the policy with new simulation parameters,
and demonstrate successful transfer in precise robot arm
manipulation [41] and bipedal motions [42]. We similarly
leverage some real-world data to tune the randomization
range of critical parameters in simulation to reduce the

discrepancy between simulation and the real world for a
successful policy transfer.

III. PRELIMINARY

We parameterize the quadrupedal robot’s motions using
two components: the base velocities and the positions of the
front hands in the robot base frame. We formulate the prob-
lem of tracking the desired bipedal motions as a Markov De-
cision Process (MDP) defined by (S,A, T , r, γ, ρ0), where
S is the state space, A is the action space, T : S ×A 7→ S
is the transition function, r : S × A 7→ R is the reward
function, γ is the discount factor, and ρ0 is the initial state
distribution. The objective is to train a policy π∗ which
could lead to maximum discounted accumulative reward
π∗ = argmaxπ Es0∼ρ0,at∼π(·|st)

[∑
t≥0 γ

tr(st, at)
]
.

We adopt proximal policy optimization (PPO) [43], a state-
of-the-art RL algorithm to solve the MDP. PPO jointly trains
a parametrized policy network πθ(a|s) and a critic function
Vϕ when optimizing the RL objective.

We consider bipedal motions with an upright standing pose
in this work, and parameterize them with the linear velocity
of the robot base, the base heading, and the positions of the
end effectors in front limbs relative to the base.

IV. METHOD

We propose a bi-level framework to learn bipedal motions
on a quadruped. We first train a motion-conditioned policy in
simulation that allows the robot to stand on hind toes while
tracking random motions. Since the desired bipedal motions
are highly agile and are sensitive to physical parameters, we
calibrate the simulator via a simple real-to-sim process to
enable successful deployment on the real robot. Afterwards,
we generate the sequence of motion targets from multiple
modalities of human inputs, and command the RL policy to
accomplish human-like agile bipedal maneuvers.

A. Learning a motion-conditioned policy with RL

We design a model-free RL approach to obtain a control
policy that empowers a quadrupedal robot with the ability
to stand up and track motions. The policy is trained in a
massively parallel GPU-based simulator Isaac Gym [44].

Observations and actions: Our policy observes a history
of proprioceptive information as its input and predicts the
PD control target for all 12 motors. Specifically, the ob-
servation concatenates 3 frames of sensory input at [t −
0.04s, t − 0.02s, t]. Each frame consists of joint positions,
the orientation of the robot base, the last applied actions, the
desired linear and angular velocity of the robot base, and
the desired positions of front toes in the base coordination.
We encode the base orientation using the projection of the
vectors (0, 0,−1) and (1, 0, 0) from the world coordination
to the current robot base coordination. The policy predicts the
target joint positions for the PD controller with parameters
Kp = 30 and Kd = 3 at 50Hz. The critic function takes the
policy observation and other privileged information that is
only accessible in simulation such as the joint friction and
damping as its input.



Reward design: The reward function is a summation of
three categories of terms r = rstand+rtrack+rreg to achieve the
following objectives: maintaining the standing pose with only
two toes contacting the ground, tracking desired motions as
accurately as possible, and avoiding drastic behaviors that
are dangerous when deployed in the real world.

We define the standing reward similar to [16] as rstand =
rheight +rpitch +rcollision, where rheight encourages the robot to
lift up its body, rpitch credits the robot to maintain a certain
pitch angle so as to stand upright, and rcollision penalizes all
parts of the robot except its rear feet touching the ground.

The tracking reward rtrack aims to match the linear veloc-
ity, the heading of the robot base, and the relative position
of the front toes to their targets. rtrack(s) = rtrack

base v(s) +

rtrack
heading(s)+rtrack

hand(s), r
track
x (s) = αxcx(s) exp

(
− ex(s)

σx

)
, x =

{base v, heading, hand}. αx and σx are weighting constants,
ex(s) is the tracking error. cx(s) is a dynamic scaling factor
in the range of [0, 1] conditioned on the standing performance
and only reaches 1 after the robot has stood upright. If c is a
constant, we find it challenging to obtain a policy that both
stands up high and tracks motion since reducing tracking
error is easier to exploit compared to the standing reward. We
observe that the robot would get stuck at a strategy that tracks
hand motions while sitting on the hind legs (see Sec. V-C).

The regularization reward rreg sums up necessary shap-
ing terms that penalize unrealistic behaviors. rreg includes
commonly used terms from [45] that penalize drastic joint
motions, joint positions and torques close to limits, and large
action rates. In addition, we regulate rear foot movements to
follow a trotting gait with a height of 5cm with rreg

gait and
penalize slipping on the ground with rreg

slip.
Episode termination: The robot resets from a sitting pose

with four feet touching the ground. An episode terminates
after a maximum number of 1000 steps is reached or under
any of the following early-termination conditions: (a) the
robot base or the front limbs is in collision after the first
30 steps, (b) any joint reaches its position limit.

Tracking targets: The agent is commanded to track
random motion targets during RL training. The desired base
linear velocity along the x-axis (forward and backward) is
sampled from discretized bins ranging between [-0.3, 0.3]m/s
and discretized at an interval of 0.1m/s every 10 seconds.
The desired velocity in the y-axis (side) is fixed as 0. The
desired heading direction is sampled from [−π/2, π/2]
radians relative to the current heading every 10 seconds, and
the desired angular velocity (which is the observation of the
policy) is updated every step using the difference between
the current and desired heading directions. We update future
goal positions of front limb end-effectors every 3 seconds,
and compute the desired positions of front toes in each step
(the observed targets) by interpolating between the last and
future goal positions linearly. We make sure that the goal
positions of end-effectors are reachable within the joint limit.

A sit-down policy for safe ending: We train a separate
sit-down policy that can transit the robot from random stand-
up poses to a quadrupedal landing pose, and append it after

the motion-conditioned policy for safe termination during
deployment on the real robot. The sit-down is also trained
with RL. The initial state distribution for the policy is upright
standing poses with random facing directions and random
front limb motor positions sampled within their limits. The
reward function is designed to encourage the robot’s belly
to face downward and to credit the joint positions for being
close to those in a nominal quadrupedal standing pose.

B. Sim-to-real transfer via real-to-sim calibration

Domain randomization is a powerful sim-to-real technique
and we also adopt it for deployment. However, bipedal
motions are inherently unstable and are sensitive to physical
parameters. The RL policy would fail to find a solution
that fits all physical parameters (see Sec. V-C) if too much
randomization is applied. To ensure good transfer perfor-
mance with only slight randomization, we conduct real-to-
sim calibration that searches for the simulation parameters
that can best explain the real robot trajectories.

Specifically, we apply the same sequence of actions both
in simulation and on the real robot for the calibration. The
sequence used to probe the real world is from rollouts of
policies trained in the early development stage of this project
and lasts for 120 seconds in total. Since the policies trained
from an uncalibrated simulator can hardly succeed in the real
world, we choose to hang up the robot and run the sequence
in an open loop during calibration to avoid hardware damage,
and save the joint position readings qreal

i |Ni=0 from 12 motors
at 200 Hz. Given a specific configuration of simulation pa-
rameters ξ, we fix the base link in simulation and collect joint
positions qsim

i (ξ)|Ni=0 by applying the same action sequence.
We spawn 8192 simulation environments and search for the
parameters with minimal discrepancy to the real world as

ξ⋆ = argmin
ξ

N∑
i=0

|qsim
i (ξ)− qreal

i |2. (1)

We calibrate joint friction, joint damping, limb mass, and
system delay in this process. Other parameters that are
not probed (e.g., those related to contacts) are randomized
naively. All randomized physical parameters and their ranges
are listed in Table I. We remark that our calibration process is
more end-to-end and does not require additional instruments
compared to fitting a single module such as motors in [40].

C. Generating reference motions for human-like maneuvers

We study the generation of human-like motions for a
quadrupedal robot from two modalities: one is to mimic
human videos, and another is to convert natural language in-
structions into motions with a large language model (LLM).

For mimicking human videos, we focus on retargeting the
human front limb motions to the robot. We first adopt an off-
the-shelf human pose detector [46], [47] to estimate the 3D
skeleton and obtain the vectors of wrists relative to the body
phuman for each frame extracted from the video. The desired
hand positions for the robot probot are then calculated by
scaling down phuman to compensate for the differences in the
size and working space between the human and the robot.



TABLE I: Randomized simulation parameters and ranges.

Name Range

Joint friction [0.03, 0.08]
Joint damping [0.02, 0.06]
Rigid body friction [1.0, 3.0]
Rigid body restitution [0.0, 0.4]
Base mass offset [-0.5kg, 0.5kg]
Hip mass offset [0kg, 0.1kg]
Thigh mass offset [-0.05kg, 0.05kg]
Calf mass offset [-0.05kg, 0.05kg]
Foot mass offset [0kg, 0.01kg]
Center of mass displacement [-0.01m, 0.01m]
Kp, Kd [80%, 120%]
Delay [0.005s, 0.03s]

Fig. 2: The workflow of generating reference motions from
human language instructions with an LLM. The language
command from the user is first decomposed into a sequence
of motion descriptions, then converted to targets consisting
of base velocity, heading, and front limb joint positions. The
example outputs by the LLM in both steps are in grey boxes,
and the prompts we use are in cyan boxes.

As for the language input, we leverage the common
sense knowledge of a pretrained LLM to generate reference
motions that can fulfill the natural language instruction. As
illustrated in Fig. 2, the generation is done with two rounds
of conversation. In the first round, we prompt the LLM to
decompose an abstract instruction into a sequence of key
frames and to give detailed descriptions for each frame along
the axis of the base velocity, hand height, hand orientation,
calf-thigh joint, and the relationship with the previous frame.
In the second round, the LLM is prompted to format the
description of each frame as the precise target motion for the
robot, including the base velocity, the heading direction, and
the joint positions of 6 motors on the front limbs. The joint
positions are finally converted to positions of end effectors

with forward kinematics.
Since the LLM has limited domain knowledge concerning

the specification of our quadrupedal robot, it is challenging to
directly generate precise desired motions. To help the LLM
generate reasonable values, we provide it with a set of rules
specific to the kinematics of the robot in the prompt similar
to [48], [49], such as “if the FL hand is tilted outward, then
set FL hip joint within range (0.1,0.57) radians”.

V. EXPERIMENTS

We conduct experiments with a quadrupedal robot Xi-
aomi CyberDog2 [11]. The robot is driven by 12 identical
CyberGear [50] motors. All computation in deployment
is run on the internal board of the robot to reduce the
communication latency.

A. Performance of the motion-conditioned policy

We test whether the control policy trained with RL can
accomplish bipedal locomotion tasks with manually written
desired motions. When commanded to track zero velocity
and zero relative heading direction, the robot stands upright
from the initial lying pose within 1 second as illustrated in
the left half of Fig. 3. Fig. 4a shows the robot stably walks
forward and backward following the target linear velocity
vx = ±0.3m/s after standing up. In Fig. 4b, we set the
desired heading direction to 90 and -60 degrees relative to the
initial pose, and the policy effectively controls the robot to
turn around following these commands. After each bipedal
motion, the robot is controlled by the same sit-down RL
policy to settle down back to a resting pose with four legs
on the ground (see the right half of Fig. 3).

We visualize the tracking performance of front toes in
simulation during segments of “waving hand” (left) and
“ballet dance” (right) in Fig. 5. The intended positions (blue)
and the achieved positions (orange) are closely aligned,
showcasing the effectiveness of front-toe tracking.

Results of real-to-sim calibration: As is described in
Sec. IV-B, we conduct real-to-sim calibration to reduce
the discrepancy between the simulator and the real robot.
In the left plot of Fig. 6, we show the relation between
simulated joint frictions and the sim-to-real discrepancy in
joint positions per control step averaged over 120s of the
open-loop trajectory. The sim-to-real gap is the smallest in
our calibrated joint friction range, and the error goes up
in both directions out of this range. In the right plot, we
visualize the positions of three motors on the rear left leg
in simulation and the corresponding real robot data recorded
during open-loop control. The trajectory generated from the
best-calibrated physical parameters (purple) matches the real
data (red) much better than the uncalibrated one (blue).

B. Performing human-like motions when combined with gen-
erated motion targets

We then command the low-level policy with target com-
mands parsed from human videos or natural languages and
verify whether our system can enable human-like motions
on the quadruped robot. We invite two human participants to



Fig. 3: Our RL policy brings up the quadrupedal robot from a lying pose to a stabilized bipedal standing pose. The separate
sit-down policy then controls the robot from the upright standing pose to settle down with four legs on the ground. The
learned policies demonstrate great agility, using less than 1 second to stand up and sit down, while are sufficiently robust
to work on the real robot.

(a) Track different linear velocities of the robot base. (b) Track different heading directions of the robot base.

Fig. 4: The quadrupedal robot demonstrates bipedal locomotion following target linear velocities vx = ±0.3m/s to walk
forward or backward, and tracking target heading directions 90 degrees to the left or 60 degrees to the right.

TABLE II: Ablation studies on the key designs for training our RL policy. The mean and standard deviation over three
seeds are reported for each variant. Real2sim calibration, the dynamic scaling factor in the tracking reward, and the feet
regularization reward all contribute to achieving the best balance over the stand-up performance, the tracking accuracy, and
the feet clearance.

Method rtrack
base v rtrack

heading rtrack
hand rheight r

reg
slip Episodic reward Episode length

Ours 0.221±0.022 0.173±0.009 0.679±0.010 0.389±0.005 -0.122±0.005 30.53±0.58 826.68±12.01
w/o real2sim 0.080±0.013 0.074±0.013 0.318±0.059 0.194±0.036 -0.128±0.020 12.10±2.35 413.14±73.35
w/o dynamic scale 0.177±0.058 0.137±0.050 0.378±0.327 0.300±0.098 -0.126±0.027 21.92±9.43 767.41±106.08
w/o feet reg. 0.211±0.040 0.153±0.007 0.612±0.012 0.350±0.014 -0.207±0.076 23.82±1.59 749.31±20.00

Fig. 5: The visualization of front-toe tracking during seg-
ments of “wave hand” (left) and “ballet dance” (right) in
simulation. Blue dots represent the desired positions and the
orange dots represent the achieved positions. The varying
hues indicate the progression of time.

provide motion clips and map their hand trajectories to the
quadruped as described in Sec. IV-C. Fig. 1 demonstrates
our robot mimicking fast boxing motion. The commands
are extracted every 0.1s from the video. The robot manages
to keep balance while performing punches and an uppercut
at high speed. The human reference frames annotated with
detected skeletons are illustrated in the front row, and the
robot execution trajectories are in the bottom row. Fig. 7
shows a slow ballet dance that lasts for more than 10 seconds.

The motions are extracted every 0.5s. The robot follows the
human guidance to gracefully lift up both hands from its
waist to above its head, then drops down the right arm and
opens it up with its best effort, and finally moves the left
hand to the side. The robot does open its arm to the same
extent as the human due to the position limit of its hip joints.

We also try to generate motion sequences to fulfill bipedal
motions with an LLM. We prompt GPT-3.5 [51] to de-
compose a natural language instruction into a sequence of
target base velocity, heading direction, and front limb joint
positions, then convert joint positions to hand positions with
forward kinematics. Fig. 8 shows an example of using LLM-
generated commands to follow a language instruction “step
forward, then stop to wave left hand upward and downward”.

Finally, we show an interesting example of physical inter-
action in Fig. 9 where a human holds the lifted front limb
of the standing quadruped and physically guides its position.
Our policy is sufficiently robust to keep balanced at all times.

C. Ablation studies

We compare our method with the following variants: (a)
w/o real2sim calibration, which randomizes the joint friction
according to the value provided in the URDF to illustrate
an uncalibrated simulation environment; (b) replacing the
dynamic scales cx(s) in the tracking reward terms that



Fig. 6: The results of real-to-sim calibration. Left: the relationship between the sim-to-real difference and the simulated joint
friction. The calibrated randomization range is chosen in the region with low errors. Right: the real motor positions w.r.t.
the time on the rear left leg and the simulated ones using uncalibrated and calibrated physical parameters. The simulated
trajectory matches the real world better after real-to-sim calibration.

Fig. 7: The quadruped robot follows a human to perform
ballet. It keeps balanced and tracks the hand poses at best
effort during the long motion that lasts for more than 10s.

Fig. 8: Using LLM to generate motions for walking forward
a few steps and then waving the left hand up and down.

are conditioned on the standing up performance with static
coefficients 1; (c) removing the reward terms rreg

gait and rreg
slip

that regulate the gait of rear feet. All variants are trained
for three seeds. Each run is evaluated for 50 episodes in the
same calibrated environment using the checkpoint trained for
18000 iterations. The performances are measured using both
overall episodic metrics and detailed rewards regarding the
base height, the tracking error, and the feet clearance.

As is shown in Table II, using an uncalibrated joint friction
range [0, 0.2] (the second row) significantly degrades the
performance in all metrics compared with the calibrated

Fig. 9: A human walks hand-in-hand with the standing
quadruped robot and drags its front leg to change its position.

Fig. 10: The feet heights recorded along the execution of
different policies in simulation. Darker colors indicate the
lower heights. Top: The left and right foot heights of the
policy trained with our feet regularization reward terms,
which demonstrates nice feet clearance. Bottom: A policy
trained without these regularization terms tends to slip on
the ground and can hardly be transferred to the real robot.

range of [0.03, 0.08] (the first row), indicating the necessity
of an appropriate randomization range. The variant “w/o dy-
namic scale” also performs worse than our original version.
It results in a lower base height since the robot finds a sub-
optimal strategy that “sits” on the hind calf. The tracking
reward and the base height of the policy trained without the
gait regularization are comparable to the main result, but
the feet slippery metric is much worse. We also compare
the foot heights of the policies trained with or without the
gait regularization in Fig. 10. Without the regualization, the
robot only lifts up the hind legs slightly above the ground
and demonstrates irregular contact patterns, thus is difficult
to be deployed in the real world where the materials of the
ground and the feet are not perfectly rigid bodies.

VI. CONCLUSION

We study the problem of enabling a quadrupedal robot to
perform agile human-like bipedal motions and propose a bi-
level framework. The low level is a motion-conditioned RL
policy that tracks the desired states of the robot base and
the front limbs while balancing on hind toes. At the high
level, we generate human-like motion sequences to command
the low-level policy from human videos or natural language
instructions. Currently, we consider motions that are feasible
with proprioceptive states only. Augmenting the robot with
environmental perception to perform more complex interac-
tions with humans and objects is an interesting future work.



REFERENCES

[1] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of honda humanoid robot,” in Proceedings. 1998 IEEE international
conference on robotics and automation (Cat. No. 98CH36146), vol. 2.
IEEE, 1998, pp. 1321–1326.

[2] S. Shamsuddin, L. I. Ismail, H. Yussof, N. I. Zahari, S. Bahari,
H. Hashim, and A. Jaffar, “Humanoid robot nao: Review of control
and motion exploration,” in 2011 IEEE international conference on
Control System, Computing and Engineering. IEEE, 2011, pp. 511–
516.

[3] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, pp. 429–455, 2016.

[4] S. Shigemi, “Asimo and humanoid robot research at honda.”
[5] O. Stasse, T. Flayols, R. Budhiraja, K. Giraud-Esclasse, J. Carpentier,

J. Mirabel, A. Del Prete, P. Souères, N. Mansard, F. Lamiraux et al.,
“Talos: A new humanoid research platform targeted for industrial
applications,” in 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids). IEEE, 2017, pp. 689–695.

[6] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[7] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[8] Y. Ji, Z. Li, Y. Sun, X. B. Peng, S. Levine, G. Berseth, and K. Sreenath,
“Hierarchical reinforcement learning for precise soccer shooting skills
using a quadrupedal robot,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
1479–1486.

[9] C. Yu and A. Rosendo, “Multi-modal legged locomotion framework
with automated residual reinforcement learning,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, pp. 10 312–10 319, 2022.

[10] S. Xu, H. Wang, J. Gao, Y. Ouyang, C. Yu, and Y. Wu, “Language-
guided generation of physically realistic robot motion and control,”
arXiv preprint arXiv:2306.10518, 2023.

[11] Xiaomi, “Cyberdog2,” https://www.mi.com/cyberdog2, 2023, ac-
cessed: Aug. 2023.

[12] G. Bellegarda and Q. Nguyen, “Robust quadruped jumping via deep
reinforcement learning,” arXiv preprint arXiv:2011.07089, 2020.

[13] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae Kim, and
P. Agrawal, “Learning to jump from pixels,” in Conference on Robot
Learning. PMLR, 2022, pp. 1025–1034.

[14] H.-W. Park, P. M. Wensing, and S. Kim, “Jumping over obstacles
with mit cheetah 2,” Robotics and Autonomous Systems, vol. 136, p.
103703, 2021.

[15] ——, “Online planning for autonomous running jumps over obstacles
in high-speed quadrupeds,” in 2015 Robotics: Science and Systems
Conference, RSS 2015. MIT Press Journals, 2015.

[16] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan,
and S. Levine, “Learning and adapting agile locomotion skills by
transferring experience,” arXiv preprint arXiv:2304.09834, 2023.

[17] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hutter, “Cat-like
jumping and landing of legged robots in low gravity using deep
reinforcement learning,” IEEE Transactions on Robotics, vol. 38, no. 1,
pp. 317–328, 2021.

[18] X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng,
and K. Sreenath, “Creating a dynamic quadrupedal robotic goalkeeper
with reinforcement learning,” 2022.

[19] Y. Fuchioka, Z. Xie, and M. Van de Panne, “Opt-mimic: Imitation
of optimized trajectories for dynamic quadruped behaviors,” in 2023
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2023, pp. 5092–5098.

[20] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and
M. Hutter, “Advanced skills through multiple adversarial motion priors
in reinforcement learning,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 5120–5126.

[21] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine, “Sfv:
Reinforcement learning of physical skills from videos,” ACM Trans.
Graph., vol. 37, no. 6, Nov. 2018.

[22] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” in
Robotics: Science and Systems, 07 2020.

[23] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa,
“Amp: Adversarial motion priors for stylized physics-based character
control,” ACM Trans. Graph., vol. 40, no. 4, Jul. 2021. [Online].
Available: http://doi.acm.org/10.1145/3450626.3459670

[24] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Mar-
tius, “Learning agile skills via adversarial imitation of rough partial
demonstrations,” in Conference on Robot Learning. PMLR, 2023,
pp. 342–352.

[25] A. Escontrela, X. B. Peng, W. Yu, T. Zhang, A. Iscen, K. Goldberg,
and P. Abbeel, “Adversarial motion priors make good substitutes for
complex reward functions,” in 2022 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2022, pp. 25–32.

[26] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin, J. Lee, and
M. Hutter, “Advanced skills through multiple adversarial motion priors
in reinforcement learning,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 5120–5126.

[27] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” in Conference
on Robot Learning. PMLR, 2023, pp. 22–31.

[28] E. Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti, “Variable
horizon mpc with swing foot dynamics for bipedal walking control,”
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 2349–2356,
2021.

[29] E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse,
M. Taix, and N. Mansard, “Whole-body model predictive control
for biped locomotion on a torque-controlled humanoid robot,” in
2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids). IEEE, 2022, pp. 638–644.

[30] T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot cassie.” in Robotics:
Science and Systems, vol. 101. Pittsburgh, Pennsylvania, USA, 2018,
p. 14.

[31] A. Hereid, O. Harib, R. Hartley, Y. Gong, and J. W. Grizzle, “Rapid
trajectory optimization using c-frost with illustration on a cassie-series
dynamic walking biped,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2019, pp. 4722–
4729.

[32] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp.
2811–2817.

[33] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Robust and versatile bipedal jumping control through multi-task
reinforcement learning,” arXiv preprint arXiv:2302.09450, 2023.

[34] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in 2017 IEEE/RSJ international con-
ference on intelligent robots and systems (IROS). IEEE, 2017, pp.
23–30.

[35] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803–3810.

[36] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active domain
randomization,” in Conference on Robot Learning. PMLR, 2020, pp.
1162–1176.

[37] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen, “How
to pick the domain randomization parameters for sim-to-real transfer
of reinforcement learning policies?” arXiv preprint arXiv:1903.11774,
2019.

[38] L. Ljung, “System identification,” in Signal analysis and prediction.
Springer, 1998, pp. 163–173.

[39] S. Kolev and E. Todorov, “Physically consistent state estimation and
system identification for contacts,” in 2015 IEEE-RAS 15th Interna-
tional Conference on Humanoid Robots (Humanoids). IEEE, 2015,
pp. 1036–1043.

[40] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[41] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac,
N. Ratliff, and D. Fox, “Closing the sim-to-real loop: Adapting simula-
tion randomization with real world experience,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
8973–8979.



[42] J. Tan, Z. Xie, B. Boots, and C. K. Liu, “Simulation-based design
of dynamic controllers for humanoid balancing,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 2729–2736.

[43] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[44] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu based physics simulation for robot learning,”
in Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021.

[45] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[46] V. Bazarevsky, I. Grishchenko, K. Raveendran, T. Zhu, F. Zhang, and
M. Grundmann, “Blazepose: On-device real-time body pose tracking,”
arXiv preprint arXiv:2006.10204, 2020.

[47] H. Xu, E. G. Bazavan, A. Zanfir, W. T. Freeman, R. Sukthankar, and
C. Sminchisescu, “Ghum & ghuml: Generative 3d human shape and
articulated pose models,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2020, pp. 6184–6193.

[48] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas, H.-
T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik et al., “Language to
rewards for robotic skill synthesis,” arXiv preprint arXiv:2306.08647,
2023.

[49] Y. Tang, W. Yu, J. Tan, H. Zen, A. Faust, and T. Harada, “Saytap: Lan-
guage to quadrupedal locomotion,” arXiv preprint arXiv:2306.07580,
2023.

[50] Xiaomi, “Cybergear,” https://www.mi.com/shop/buy/detail?product
id=19086, 2023, accessed: Aug. 2023.

[51] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in
Neural Information Processing Systems, vol. 35, pp. 27 730–27 744,
2022.


