
Published in Transactions on Machine Learning Research (01/2023)

Beyond Information Gain: An Empirical Benchmark for Low-
Switching-Cost Reinforcement Learning

Shusheng Xu1, Yancheng Liang1, Yunfei Li1, Simon S. Du2, Yi Wu1,3

1 IIIS, Tsinghua University, 2 University of Washington, 3 Shanghai Qi Zhi Institute
{xuss20, liangyc19, liyf20}@mails.tsinghua.edu.cn
ssdu@cs.washington.edu, jxwuyi@gmail.com

Reviewed on OpenReview: https://openreview.net/forum?id=Xq1sTZTQVm

Abstract

A ubiquitous requirement in many practical reinforcement learning (RL) applications is
that the deployed policy that actually interacts with the environment cannot change fre-
quently. Such an RL setting is called low-switching-cost RL, i.e., achieving the highest
reward while reducing the number of policy switches during training. It has been a re-
cent trend in theoretical RL research to develop provably efficient RL algorithms with low
switching cost. The core idea in these theoretical works is to measure the information gain
and switch the policy when the information gain is doubled. Despite of the theoretical ad-
vances, none of existing approaches have been validated empirically. We conduct the first
empirical evaluation of different policy switching criteria on popular RL testbeds, including
a medical treatment environment, the Atari games, and robotic control tasks. Surprisingly,
although information-gain-based methods do recover the optimal rewards, they often lead
to a substantially higher switching cost. By contrast, we find that a feature-based criterion,
which has been largely ignored in the theoretical research, consistently produces the best
performances over all the domains. We hope our benchmark could bring insights to the
community and inspire future research. Our code and complete results can be found at
https: // sites. google. com/ view/ low-switching-cost-rl .

1 Introduction

Reinforcement Learning (RL) has been successfully applied to solve sequential-decision problems in many
real-world scenarios, such as medical domains (Mahmud et al., 2018), robotics (Gu et al., 2017; Kalashnikov
et al., 2021), hardware placements (Mirhoseini et al., 2017; 2020), and personalized recommendation (Zheng
et al., 2018). When performing RL training in these scenarios, it is often desirable to restrict the agent
from adjusting its policy too often due to the high costs and risks of deployment. For example, updating
a treatment strategy in medical domains requires a thorough approval process by human experts (Almi-
rall et al., 2012); in personalized recommendations, it is impractical to adjust the policy online based on
instantaneous data and a more common practice is to aggregate data in a period before deploying a new
policy (Zheng et al., 2018); in problems where we use RL to learn hardware placements (Mirhoseini et al.,
2017), it is desirable to limit the frequency of changes to the policy since it is costly to launch a large-scale
evaluation procedure on hardware devices like FPGA; for learning to control a real robot, it may be risky
or inconvenient to switch the deployed policy when an operation is being performed. In these settings, it
is a requirement that the deployed policy, i.e., the policy used to interact with the environment, could keep
unchanged as much as possible. Formally, we would like our RL algorithm to both produce a policy with the
highest reward and at the same time reduce the number of deployed policy switches (i.e., a low switching
cost) throughout the training process.

In low-switching-cost RL, the central question is how to design a criterion to decide when to update the
deployed policy. A good criterion should first ensure the optimal reward, then reduce the switching cost.

1

https://openreview.net/forum?id=Xq1sTZTQVm
https://sites.google.com/view/low-switching-cost-rl

Published in Transactions on Machine Learning Research (01/2023)

Low-switching-cost RL has recently become a hot topic in theoretical RL research. Many works have studied
low-switching-cost RL and its simplified bandit setting extensively (Auer et al., 2002; Cesa-Bianchi et al.,
2013; Bai et al., 2019; Ruan et al., 2020; Gao et al., 2021; Zhang et al., 2020a;b). The core notion in these
theoretical works is information gain. Specifically, they update the deployed policy only if the measurement
of information gain is doubled, which leads to optimality bounds for the final rewards. We suggest the
readers refer to the original papers for detailed theoretical results. Algorithmic details will be presented in
Section 3.2. However, no empirical evaluation has been conducted on whether these theoretically-guided
criteria are in fact effective.

In this paper, we aim to provide systematic benchmark studies on different policy switching criteria empiri-
cally. We remark that our experiment scenarios are based on popular deep RL environments that are much
more complex than the bandit or tabular cases studied in the existing theoretical works. Empirically, we
find that, although information-gain-based criteria do achieve the optimal rewards, they perform poorly in
reducing the switching cost. By contrast, a feature-based criterion, which is rarely studied by recent the-
oretical works, performs surprisingly well across all the experiment domains. We summarize our empirical
findings and provide intuitive justifications for the feature-based method. We hope this benchmark could
bring new insights to the community from both theoretical and practical perspectives and inspire future RL
research towards this largely ignored feature-based direction.

Our contributions are summarized below.

• We conduct the first empirical study for low-switching-cost RL on environments that require modern
RL algorithms, i.e., Rainbow (Hessel et al., 2018) and SAC (Haarnoja et al., 2018), including a
medical environment, 56 Atari games1 and 6 MuJoCo control tasks. We test theoretically guided
switching criteria based on the information gain as well as other adaptive and non-adaptive criteria.

• We find that a feature-based criterion produces the best overall quantitative performance, which
largely outperforms the theoretically guided ones based on information gain. This suggests a new
research direction largely ignored by the existing literature.

• We summarize our empirical findings from a practical RL perspective and provide initial justifications
and intuitions for the feature-based criterion.

2 Related Work

Low switching cost algorithms were first studied in the bandit setting (Auer et al., 2002; Cesa-Bianchi et al.,
2013). Existing work on RL with low switching cost is mostly theoretical. To our knowledge, Bai et al.
(2019) is the first work that studies this problem for the episodic finite-horizon tabular RL setting. Bai et al.
(2019) gave a low-regret algorithm with an O

(
H3SA log (K)

)
local switching upper bound where S is the

number of stats, A is the number of actions, H is the planning horizon and K is the number of episodes
the agent plays. The upper bound was improved in (Zhang et al., 2020b;a). Recently, APEVE (Qiao et al.,
2022) achieves a switching cost of O (HSA log log (K)), which estimates the transition kernel, and adopts
policy elimination by evaluating all policies using the estimated transition kernel. However, evaluating all
policies is impossible in many real applications, and it is also non-trivial to estimate the transition kernel in
many complex environments (model-based RL). In this paper, we focus on model-free RL and the design of
the switching criterion, which is compatible with most existing DRL algorithms.

Offline RL (or Batch RL) can be viewed as a close but parallel variant of low-switching-cost RL, where
the policy does not interact with the environment at all and therefore does not incur any switching cost.
Offline RL methods typically learn from a given dataset (Lange et al., 2012; Levine et al., 2020) on a variety
of domains including education (Mandel et al., 2014), dialogues (Jaques et al., 2019) and robotics (Kumar
et al., 2020). However, a previously provided high-quality dataset, which is typically generated by experts
or a well trained policy, may not always be feasible in many practical situations. In contrast with offline

1There are a total of 57 Atari games. However, only 56 of them (excluding the “surround” game) are supported by the
atari-py package, which we adopt as our RL training interface.

2

Published in Transactions on Machine Learning Research (01/2023)

RL, which optimizes reward subject to strong assumptions, i.e., a given dataset and zero policy switch, low-
switching-cost RL aims to reduce the switching cost while maintaining similar sample efficiency and final
reward compared to its unconstrained RL counterpart without any additional algorithmic assumptions. In
theoretical literature, offline RL Antos et al. (2008); Tosatto et al. (2017); Xie & Jiang (2020); Wang et al.
(2020) and low-switching-cost RL are also two parallel fields.

Some works interpolate offline and online RL, i.e., semi-batch RL (Singh et al., 1995; Lange et al., 2012),
which update the policy many times on a large batch of transitions. However, reducing the switching cost
during training is not their focus. Matsushima et al. (2021) is perhaps the most related work to us, which
repeats offline training for a fixed (i.e., 10) iterations. In each deployment iteration, the proposed algorithm
collects transitions using a fixed deployed policy, trains an ensemble of transition models and updates a new
policy for the next iteration. However, even though the proposed model-based RL method in Matsushima
et al. (2021) outperforms a collection of offline RL baselines, the final rewards are still substantially lower than
online SAC even after consuming an order of magnitude more training samples. In our setting, an effective
policy switching criterion should preserve comparable overall sample efficiency and the final rewards to online
RL. There are also works that aim to reduce the interaction frequency with the environment rather than the
switching cost (Gu et al., 2017; Hu et al., 2021), which are parallel to our focus.

3 Reinforcement Learning with Low Switching Cost

3.1 Notation

Markov Decision Process: We consider the Markov decision model (S,A, γ, r, p0, P), where S is the
state space, A is the action space, γ is the discounted factor, r : S × A → R is the reward function, p0
is the initial state distribution, and P (x′|x, a) denotes the transition probability from state x to state x′

after taking action a. A policy π : S → A is a mapping from a state to an action. An episode starts with
an initial state x0 ∼ p0. At each step h in this episode, the agent chooses an action ah from π(xh) based
on the current state xh, receives a reward r(xh, ah) and moves to the next state xh+1 ∼ P (·|xh, ah). We
assume an episode will always terminate, so each episode e = {(xe

h, a
e
h)|0 ≤ h ≤ He} will always have a finite

horizon He. The goal of the agent is to find a policy π∗ which maximizes the discounted expected reward,
π⋆ = arg maxπ Ee

[∑He

h=0 γ
hr(xe

h, a
e
h)
]
. Ideally, we also want the agent to consume as few training samples

as possible to learn π⋆.

Low-switching-cost RL: In standard RL, a transition (xh, ah, xh) is always collected by a single policy
π. Therefore, whenever the policy is updated, a switching cost is incurred. In low-switching-cost RL, we
have two separate policies, a deployed policy πdep that interacts with the environment, and an online policy
πonl that is trained by the underlying RL algorithm. These policies are parameterized by θdep and θonl
respectively. Suppose that we totally collect K samples during the training process, then at each transition
step k, the agent is interacting with the environment using a deployed policy πk

dep. After the transition is
collected, the agent can decide whether to update the deployed πk+1

dep by the online policy πk+1
onl , i.e., replacing

θdep with θonl, according to some switching criterion J . Accordingly, the switching cost is defined by the
number of different deployed policies throughout the training process, namely:

Cswitch :=
K−1∑
k=1

I{πk−1
dep ̸= πk

dep}. (1)

In standard RL, Cswitch equals the number of policy updates during the training process, which can be
millions when using DRL algorithms. Such a large Cswitch is unacceptable in the applications of medical
domains and hardware placements. The goal of low-switching-cost RL is to design an effective algorithm
that learns π∗ using K samples while produces the smallest switching cost Cswitch. Particularly in this paper,
we focus on the design of the switching criterion J , which is the most critical component that balances the
final reward and the switching cost. The overall workflow of low-switching-cost RL is shown in Algorithm 1.

3

Published in Transactions on Machine Learning Research (01/2023)

In the following content, we present a collection of policy switching criteria and techniques, including those
inspired by the information gain principle (Sec. 3.2) as well as other non-adaptive and adaptive criteria
(Sec. 3.3). All the discussed criteria are summarized in Algorithm 2 of Appendix B.

Algorithm 1 General Workflow of Low-Switching-Cost RL
1: Initialize parameters θonl, θdep, an empty replay buffer D, Cswitch ← 0
2: for k ← 0 to K − 1 do
3: Select ak by πdep(xk), execute action ak and observe reward rk, state xk+1
4: Store (xk, ak, rk, xk+1) in D
5: Update θonl using D and an off-policy RL algorithm
6: if J (⋆) == true then
7: Update θdep ← θonl, Cswitch ← Cswitch + 1

3.2 Switching via Information Gain

Existing theoretical studies propose to switch the policy whenever the agent has gathered sufficient new
information. Intuitively, if there is not much new information, then it is not necessary to switch the policy.
The information gain is measured by the visitation count of each state-action pair or the determinant of the
covariance matrix. We implement these two criteria as follows.

Visitation-based Switching: Following Bai et al. (2019), we switch the policy when visitation count
of any state-action pair reaches an exponent (specifically 2i, i ∈ N in our experiments). Such exponential
scheme is theoretically justified with bounded switching cost in tabular cases. However, it is not feasible
to maintain precise visitations for high-dimensional states, following count-based exploration (Tang et al.,
2017), we adopt a random projection function to map the states to discrete vectors by ϕ(x) = sign(A · g(x)),
and then count the visitation to the hashed states as an approximation. A is a fixed matrix with i.i.d entries
from a unit Gaussian distribution N (0, 1) and g is a flatten function which converts x to a 1-dimensional
vector.

Information-matrix-based Switching: Another algorithmic choice for achieving infrequent policy
switches is based on the property of the feature covariance matrix (Ruan et al., 2020; Gao et al., 2021),
i.e., Λe

h =
∑

e:He≥h ψ(xe
h, a

e
h)ψ(xe

h, a
e
h)T +λI, where e denotes a training episode, h means the h-th timestep

within this episode, and ψ denotes a mapping from the state-action space to a feature space. For each episode
timestep h, Abbasi-Yadkori et al. (2011) switch the policy when the determinant of Λe

h doubles. However,
we empirically observe that the approximate determinant computation can be particularly inaccurate for
complex RL problems. Instead, we adopt an effective alternative, i.e., switch the policy when the least
absolute eigenvalue doubles. In practice, we again adopt a random projection function to map the state to
low-dimensional vectors, ϕ(x) = sign(A · g(x)), and concatenate them with actions to get ψ(x, a) = [ϕ(x), a].

3.3 Other Switching Criteria

The information-gain-based criteria are proposed under bandit or tabular cases theoretically, and our exper-
iment scenarios are much more complex. We further investigate some other criteria empirically.

Non-adaptive Switching Criterion: This simplest strategy switches the deployed policy every n
timesteps, which we denote as “FIX_n” in our experiments. Empirically, we notice that “FIX_1000” is
a surprisingly effective criteria which remains effective in most of the scenarios without hyperparameter
tuning. So we primarily focus on “FIX_1000” as our non-adaptive baseline. In addition, We specifically
use “None” to indicate the experiments without the low-switching-cost constraint where the deployed policy
keeps synced with the online policy all the time.

Policy-based Switching Criterion: Another straightforward criterion is to switch the deployed policy
when the action distribution produced by the online policy significantly deviates from the deployed policy.
Specifically, in discrete action domains, we sample a batch of training states and count the number of states

4

Published in Transactions on Machine Learning Research (01/2023)

where actions taken by the two policies differ. We switch the policy when the ratio of mismatched actions
exceeds a threshold σp. For continuous domains, we use KL-divergence to measure the policy differences.

Feature-based Switching Criterion: Beyond directly consider the difference of action distributions, an-
other possible solution for measuring the divergence between two policies is through the feature representation
extracted by the neural networks. Hence, we consider a feature-based switching criterion that decides to
switch policies according to the feature similarity between different Q-networks. Similar to the policy-based
criterion, we first sample a batch of states B from the experience replay buffer, and then extract the features
of all states with both the deployed Q-network and the online Q-network. It is noteworthy that there is
an MLP with a single hidden layer between the feature representation we adopted and the final output of
the Q-network. For a state x, the extracted features are denoted as fdep(x) and fonl(x), respectively. The
similarity score between fdep and fonl on state x is defined as

sim(x) = ⟨fdep(x), fonl(x)⟩
||fdep(x)|| × ||fonl(x)|| . (2)

We then compute the averaged similarity score on the batch of states B

sim(B) =
∑

x∈B sim(x)
||B||

. (3)

With a hyper-parameter σf ∈ [0, 1], the feature-based policy switching criterion changes the deployed policy
whenever sim(B) ≤ σf .

3.4 Implementation

In this section, we summarize the implementation details of above criteria.

Reset-Checking: Empirically, we also find an effective implementation enhancement, which produces lower
switch costs and is more robust across different environments: we only check the feature similarity when an
episode resets (i.e., a new episode starts).

Estimation of Feature Similarity & Action Difference: For policy-based and feature-based criteria,
we uniformly sample 512 from recent 10,000 transitions, and compare the action differences or feature
similarities between the deployed policy and the online policy on these sampled transitions. We also tried
other sample size and sampling method, and there is no significant difference.

Switching Threshold: For the switching threshold (i.e., the mismatch ratio σp in policy-based criterion
and parameter σf in feature-based criterion), we perform a rough grid search and choose the highest possible
threshold that still produces a comparable final policy reward. 2

4 Experiments

In this section, we conduct experiments to evaluate different policy switching criteria on Rainbow DQN
(Hessel et al., 2018) and SAC (Haarnoja et al., 2018). For discrete action spaces, we study the Atari games
and the GYMIC testbed for simulating sepsis treatment for ICU patients which requires low switching cost.
For continuous control, we conduct experiments on the MuJoCo (Todorov et al., 2012) locomotion tasks.
The details of GYMIC, Atari and MuJoCo environments are introduced in Appendix C.

4.1 Evaluation Metric

For GYMIC and Atari games whose action spaces are discrete, we adopt Rainbow DQN to train the policy;
for MuJoCo tasks with continuous action spaces, we employ SAC since it is more suitable for continuous
action spaces. We evaluate the efficiency among different switching criteria in these environments. For the
Atari and Mujoco environments, we conduct experiments over 5 seeds. For the GYMIC environment, the

2We list the hyper-parameter search space in Appendix C.

5

Published in Transactions on Machine Learning Research (01/2023)

experiments are repeated over 10 seeds due to the high variance in this environment. Implementation details
and hyper-parameters are listed in Appendix C.

We benchmark different policy switching criteria by measuring the accumulated reward as well as the switch-
ing cost in all the environments. We report the average results of all the Atari games and detailed results
of 8 representative games in the main paper due to space limit. Results for every single Atari game can be
found at our project website3.

To better quantitatively measure the effectiveness of a policy switching criterion, we propose a new evaluation
metric, Reward-threshold Switching Improvement (RSI), which takes both the policy performance and
the switching cost improvement into account. Specifically, suppose the standard online RL algorithm (i.e.,
the “None” setting) can achieve an average reward of R̂ with switching cost Ĉ4. Now, a low-switching-cost
RL criterion J leads to a reward of RJ and reduced switching cost of CJ using the same amount of training
samples. Then, we define RSI of criterion J as

RSI(J) = I

[
RJ >

(
1− sign(R̂)σRSI

)
R̂
]

log
(

max
(
Ĉ

CJ
, 1
))

, (4)

where I[·] is the indicator function and σRSI is a reward-tolerance threshold indicating the maximum allowed
performance drop with the low-switching-cost constraint applied. In our experiments, we choose a fixed
threshold parameter σRSI = 0.2. Intuitively, when the performance drop is moderate (i.e., within the
threshold σRSI), RSI computes the logarithm 5 of the relative switching cost improvements; while when the
performance decreases significantly, the RSI score will be simply 0.

4.2 Results

We compare the performances of all the criteria presented in Sec. 3, including unconstrained RL (“None”),
non-adaptive switching (“Fix_1000”), policy-based switching (“Policy”), feature-based switching (“Feature”)
and two information-gain variants, namely visitation-based (“Visitation”) and information-matrix-based
(“Info”) criteria.

Figure 1: Results on GYMIC. Top:
rewards vs. steps. Bottom: switching
costs. The switching cost of “Visita-
tion” almost overlaps with “None”.

GYMIC: This medical environment is relatively simple, and all the
criteria achieve similar learning curves as unconstrained RL as shown
in Fig. 1. However, the switching cost of visitation-based criterion
is significantly higher – it almost overlaps with “None”. While the
other information-gain variant, i.e., information-matrix-based crite-
rion, performs much better in this scenario. Overall, feature-based
criterion produces the most satisfactory switching cost without hurt
to sample efficiency. GYMIC simulates the process of treating ICU
patients. Each episode starts from a random state of a random pa-
tient, which only provides a binary reward (+15 or -15) at the end of
each episode for whether the patient is cured or not. We notice that
even a random policy can achieve an average reward of 13, which is
very close to the maximum possible reward 15. Therefore, possible
improvement by RL policies can be small in this case. However, we
want to emphasize that despite similar reward performances, differ-
ent switching criteria lead to significantly different switching costs.

Atari Games:

We then compare the performances of different switching criteria in the more complex Atari games. The state
spaces in Atari games are images, which are more complicated than the low-dimensional states in GYMIC.
Fig. 2 shows the average reward and switching of different switching criteria across all the 56 games, where
the feature-based solution leads to the best empirical performance. We also remark that the non-adaptive

3https://sites.google.com/view/low-switching-cost-rl
4We use Ĉ here since some RL algorithm may not update the policy every timestep.
5We also tried a variant of RSI that remove the log function. The results are shown in the appendix D.

6

Published in Transactions on Machine Learning Research (01/2023)

Figure 2: The average results on Atari games. We compare different switching criteria across 56 Atari games.
Left:human normalized reward. Right: the average switching cost, which is normalized by the switching cost
of “None” and shown in a log scale.

baseline is particularly competitive in Atari games and outperforms all other adaptive solutions except the
feature-based one. We can observe that information-gain variants produce substantially more policy switches.
while the feature-based solution switches less frequently.

In addition, we notice that the policy-based solution is particularly sensitive to σp in order to produce
desirable policy reward with low switching cost, while feature-based solution is easier to tune, which suggests
that the neural network features may change more smoothly than the action distribution.

Figure 3: Action difference and feature sim-
ilarity tested on Pong. Higher feature simi-
larity or lower action difference implies that
two policies are closer.

To validate this hypothesis, we visualize the action difference
and feature difference of the unconstrained Rainbow DQN on
the Atari game “Pong” throughout the training process in
Fig. 3. Note that in this case, the deployed policy is synced
with the online policy in every training step, so the difference
is merely due to a single training update. However, even in
this unconstrained setting, the difference of action distribution
fluctuates significantly. By contrast, the feature change is much
more stable.

MuJoCo Control: We evaluate the effectiveness of different
switching criteria with SAC on all the 6 MuJoCo continuous
control tasks. The results are shown in Fig. 4. In general,
we can still observe that the feature-based solution achieves
the lowest switching cost among all the baseline methods while
the policy-based solution produces the most unstable train-
ing. Interestingly, although the non-adaptive baseline has a
relatively high switching cost than the feature-based one, the
reward curve has less fluctuation, which also suggests a future
research direction on incorporating training stability into the switching criterion design.

Avg. RSI Feature Policy Info Visitation FIX_1000

GYMIC 9.30 3.93 8.39 0.0 6.91
Atari 3.60 3.22 2.33 1.83 3.25

Mujoco 8.26 5.26 4.69 1.90 6.68

Table 1: RSI (Eq. 4, σRSI = 0.2) of different criteria over different
domains. We take unconstrained RL (i.e., “None”) performance
as the RSI reference, so the RSI value for “None” is always zero.

Average RSI Scores: We also report
the RSI scores of different policy switch-
ing criteria on different domains. For
each domain, we compute the average
value of RSI scores over each individual
task in this domain. The results are re-
ported in Table 1, we can observe that the
feature-based method consistently pro-
duces the best quantitative performance
across all the 3 domains. 6

6We list the results of σRSI = 0.2 in Table 1, and also evaluate RSI using other σRSI. See Appendix D for details.

7

Published in Transactions on Machine Learning Research (01/2023)

Figure 4: The results on MuJoCo tasks.

In addition, we apply a t-test for the switching costs among different criteria. The testing procedure is
carried out for each pair of methods over all the experiment trials across all the environments and seeds.
For Atari and MuJoCo, the results show that there are significant differences in switching cost between any
two criteria (with p-value < 0.05). For GYMIC, “None” and “Visited” is the only pair with no significant
difference. It is also worth mentioning that RSI for “Visitation” for GYMIC is 0, which also shows the
switching costs of “Visitation” and “None” are nearly the same.

Figure 5: Comparison with offline RL. Offline RL does not aim to
recover the online performance.

Comparison with Offline RL:
We also compare the low-switching-
cost setting with offline RL empiri-
cally. In Fig. 5, We adopt the im-
plementations of a popular offline
RL algorithm CQL (Kumar et al.,
2020) and its online counterpart
QR-DQN (Agarwal et al., 2020b)
provided by the authors.7 For
CQL, we adopt the same dataset
with the author.8 We apply the
feature-based switching criteria to
QR-DQN and conduct the exper-
iments on 4 Atari games consid-
ered in CQL. From Fig. 5, we ob-
serve that feature-based criterion
can also reduce the switching cost
while maintaining the performance.
CQL learns from a fixed dataset, it
switches just once and doesn’t aim
to recover the online performance,
parallel to our focus.

7https://github.com/aviralkumar2907/CQL
8The dataset of Atari comes from https://github.com/google-research/batch_rl

8

https://github.com/aviralkumar2907/CQL
https://github.com/google-research/batch_rl

Published in Transactions on Machine Learning Research (01/2023)

In Fig. 6, we further compare the low-switching-cost setting against several recent offline RL methods (Fuji-
moto & Gu, 2021; Fujimoto et al., 2019; Kumar et al., 2020) on MuJoCo tasks. We use the author-provided
implementations for the offline algorithms910 and evaluate these methods on the D4RL (Fu et al., 2020)
benchmark. For TD3 (online) and TD3+Feature, we remove the behavior cloning regularization term and
the feature-normalizing process in the codebase of TD3+BC, which are designed for offline training. The
results in Fig. 6 indicate that the performances of offline methods are highly dependent on the dataset’s
quality. No offline algorithm obtains comparable performances with online training on the “random” or
“medium-replay” dataset. However, the low-switching-cost setting does not need a dataset. It can recover
online training performances and reduce switching costs by orders of magnitude.

Figure 6: Comparison with offline RL on the D4RL benchmark. The performances of offline methods are
highly dependent on the quality of the dataset. “Random” uses 1M samples from a randomly initialized
policy. “Expert” uses 1M samples from a policy trained to completion with SAC. “Medium” uses 1M
samples from a policy trained to approximately 1/3 the performance of the expert. “Medium-Replay” uses
the replay buffer of a policy trained up to the performance of the medium agent. “Medium-Expert” uses a
50-50 split of medium and expert data.

4.3 Findings and Suggestions

Information-gain-based criteria empirically result in a high switching cost. The theoretically
guided information-gain-based criteria always recover the rewards but suffer from higher switching cost

9https://github.com/sfujim/BCQ
10https://github.com/sfujim/TD3_BC

9

https://github.com/sfujim/BCQ
https://github.com/sfujim/TD3_BC

Published in Transactions on Machine Learning Research (01/2023)

in practical benchmark tasks with modern RL algorithms. We remark that most theoretical works focus
on simplified bandits or tabular MDPs when analysing mathematical properties of information-gain-based
methods. These theoretical conclusions are carried out on much simplified scenarios compared with popular
deep RL testbeds that we consider here. In addition, these theoretical analyses often ignore the constant
factors, which can be crucial for the practical use.

The difference in the output action distribution may not be a good indicator to measure
policy variation. Many RL works utilize action difference (KL divergence) to measure the difference
between policies Schulman et al. (2015); Galashov et al. (2019); Rudner et al. (2021). In our low-switching-
cost RL experiments, we empirically observe that the policy-based criterion is particularly sensitive to the
threshold parameter. Further analysis (Fig. 3) reveals that the output action changes drastically throughout
the training process. Even after the reward converges, we can still observe a significant fluctuation of
action difference between the online and the deployed policies. By contrast, feature similarity appears to
be more stable. Therefore, we suggest that, when comparing two learning policies in practice, feature-
based measurements can be strong candidates for stable policy difference estimates, in addition to popular
action-based metrics. We remark that this finding could be applicable to the general RL use cases.

Feature-based switching criterion empirically performs the best and should be worth more
research efforts. Across all domains, feature-based criterion consistently achieves the lowest switching cost
while maintains the similar reward to the case without the low-switching-cost constraint. Feature learning
has been widely investigated from the theoretical perspective in other domains, such as supervised learning
Allen-Zhu & Li (2020); Du et al. (2021); Tripuraneni et al. (2020), constrastive learning Tian et al. (2021)
and RL Agarwal et al. (2020a). However, there is little attention on feature-based methods in the theoretical
literature of low-switching-cost RL. We suggest that more research attention should be put on the feature-
based direction. We also provide some intuitive justifications for the feature-based criterion using some
recent advances in representation learning theory and hope this insight could inspire future research.

To illustrate the insight, we consider the following setting. Suppose we want to learn f(·), a representation
function that maps the input to a k-dimension vector. We assume we have input-output pairs (x, y) with
y = ⟨w, f∗(x)⟩ for some underlying representation function f∗(·) and a linear predictor w ∈ Rk. For ease of
presentation, let us assume we know w, and our goal is to learn the underlying representation which together
with w gives us 0 prediction error. Suppose we have data sets D1 and D2. We use D1 to train an estimator
of f∗, denoted as f1, and D1 ∪ D2 to train another estimator of f∗, denoted as f1+2. The training method
is empirical risk minimization, i.e.,

f1 ← min
f∈F

1
|D1|

∑
(x,y)∈D1

(y − ⟨w, f(x)⟩)2 and

f1+2 ← min
f∈F

1
|D1 ∪ D2|

∑
(x,y)∈D1∪D2

(y − ⟨w, f(x)⟩)2

where F is some pre-specified representation function class.

The following theorem suggests if the similarity score between f1 and f1+2 is small, then f1 is also far from
the underlying representation f∗.
Theorem 1. Suppose f1 and f1+2 are trained via aforementioned scheme. There exist dataset D1, D2,
function class F and w such that if the similarity score between f1 and f1+2 on D1+2 is smaller than α,
then the prediction error of f1 on D1+2 is at least 1− α.

Theorem 1 suggests that in certain scenarios, if the learned representation has not converged (the similarity
score is small), then it cannot be the optimal representation which in turn will hurt the prediction accuracy.
Therefore, if the similarity score is small, we should change the deployed policy.

5 Conclusion

In this paper, we focus on the low-switching-cost reinforcement learning problem and take the first empir-
ical step towards understanding how to design an effective solution for reducing the switching cost while

10

Published in Transactions on Machine Learning Research (01/2023)

maintaining good performance. By systematic empirical studies on practical benchmark environments with
modern RL algorithms, we find that there exists a large theory-practice gap in the information-gain-based
switching criteria. Meanwhile, the feature-based solution performs the best but has been rarely discussed
by the theoretical community. We raise this open question and provide some intuitive justification for the
feature-based criterion in this paper. We hope this benchmark project could bring new insights for the
community.

Limitation and Social Impact We remark that there is still a great research room towards designing
a more principled method for low-switching-cost RL. In addition to the feature-based criterion, another
important direction is to give provable guarantees for the settings with a large state space or a function
approximator beyond existing works on tabular cases (Bai et al., 2019; Zhang et al., 2020b;a). We believe
our paper is just the first step on this important problem, which could serve as a foundation towards great
future research advances. Medical domains are one potential application for this work, and we believe that it
won’t result in a worse negative social impact than traditional RL algorithms in this domain. Nevertheless,
at the beginning of training, this policy may would not be optimal and should be applied with great caution.
A possible direction is to initialize the policy using offline data, and to improve the policy using an online
RL algorithm with low switching costs, which we leave as future work.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits.

In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada,
Spain, pp. 2312–2320, 2011.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity
and representation learning of low rank mdps. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Bal-
can, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 20095–
20107. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/
e894d787e2fd6c133af47140aa156f00-Paper.pdf.

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline rein-
forcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR, 2020b.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep learning.
arXiv preprint arXiv:2001.04413, 2020.

Daniel Almirall, Scott N Compton, Meredith Gunlicks-Stoessel, Naihua Duan, and Susan A Murphy. Design-
ing a pilot sequential multiple assignment randomized trial for developing an adaptive treatment strategy.
Statistics in medicine, 31(17):1887–1902, 2012.

András Antos, Csaba Szepesvári, and Rémi Munos. Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. Machine Learning, 71(1):89–129,
2008.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine learning, 47(2-3):235–256, 2002.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient q-learning with low switching
cost. In Advances in Neural Information Processing Systems, pp. 8002–8011, 2019.

Nicolo Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other adaptive
adversaries. In Advances in Neural Information Processing Systems, pp. 1160–1168, 2013.

Simon Shaolei Du, Wei Hu, Sham M. Kakade, Jason D. Lee, and Qi Lei. Few-shot learning via learning the
representation, provably. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=pW2Q2xLwIMD.

11

https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e894d787e2fd6c133af47140aa156f00-Paper.pdf
https://openreview.net/forum?id=pW2Q2xLwIMD
https://openreview.net/forum?id=pW2Q2xLwIMD

Published in Transactions on Machine Learning Research (01/2023)

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep data-
driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Alexandre Galashov, Siddhant Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan Schwarz, Guil-
laume Desjardins, Wojtek M. Czarnecki, Yee Whye Teh, Razvan Pascanu, and Nicolas Heess. Information
asymmetry in KL-regularized RL. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=S1lqMn05Ym.

Minbo Gao, Tianle Xie, Simon S Du, and Lin F Yang. A provably efficient algorithm for linear markov
decision process with low switching cost. arXiv preprint arXiv:2101.00494, 2021.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In 2017 IEEE international conference on robotics
and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning, pp. 1861–1870. PMLR, 2018.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,
Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining improvements in deep
reinforcement learning. In AAAI, 2018.

Han Hu, Kaicheng Zhang, Aaron Hao Tan, Michael Ruan, Christopher Agia, and Goldie Nejat. A sim-to-real
pipeline for deep reinforcement learning for autonomous robot navigation in cluttered rough terrain. IEEE
Robotics and Automation Letters, 6(4):6569–6576, 2021. doi: 10.1109/LRA.2021.3093551.

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,
Shixiang Gu, and Rosalind Picard. Way off-policy batch deep reinforcement learning of implicit human
preferences in dialog. arXiv preprint arXiv:1907.00456, 2019.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic reinforcement learning at
scale. CoRR, abs/2104.08212, 2021. URL https://arxiv.org/abs/2104.08212.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline reinforce-
ment learning. arXiv preprint arXiv:2006.04779, 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning, pp. 45–73. Springer, 2012.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Mufti Mahmud, M. Shamim Kaiser, Amir Hussain, and Stefano Vassanelli. Applications of deep learning and
reinforcement learning to biological data. IEEE Trans. Neural Networks Learn. Syst., 29(6):2063–2079,
2018.

Travis Mandel, Yun-En Liu, Sergey Levine, Emma Brunskill, and Zoran Popovic. Offline policy evaluation
across representations with applications to educational games. In AAMAS, pp. 1077–1084, 2014.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-efficient
reinforcement learning via model-based offline optimization. In International Conference on Learning
Representations, 2021.

12

https://openreview.net/forum?id=S1lqMn05Ym
https://arxiv.org/abs/2104.08212

Published in Transactions on Machine Learning Research (01/2023)

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar,
Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization with reinforcement
learning. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of
Machine Learning Research, pp. 2430–2439. PMLR, 2017.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim M. Songhori, Shen Wang, Young-Joon
Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa,
William Hang, Emre Tuncer, Anand Babu, Quoc V. Le, James Laudon, Richard C. Ho, Roger Carpenter,
and Jeff Dean. Chip placement with deep reinforcement learning. CoRR, abs/2004.10746, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, Andrei A. Rusu, J. Veness, Marc G. Bellemare, A. Graves, Martin A.
Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, S. Petersen, C. Beattie, A. Sadik, Ioannis Antonoglou,
H. King, D. Kumaran, Daan Wierstra, S. Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518:529–533, 2015.

Dan Qiao, Ming Yin, Ming Min, and Yu-Xiang Wang. Sample-efficient reinforcement learning with loglog
(t) switching cost. arXiv preprint arXiv:2202.06385, 2022.

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distributional
optimal design. arXiv preprint arXiv:2007.01980, 2020.

Tim G. J. Rudner, Cong Lu, Michael Osborne, Yarin Gal, and Yee Whye Teh. On pathologies in KL-
regularized reinforcement learning from expert demonstrations. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=sS8rRmgAatA.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy
optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1889–1897, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/schulman15.html.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning with soft state aggregation.
In Advances in neural information processing systems, pp. 361–368, 1995.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman, F. Turck,
and P. Abbeel. Exploration: A study of count-based exploration for deep reinforcement learning. ArXiv,
abs/1611.04717, 2017.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynamics without
contrastive pairs. In International Conference on Machine Learning, pp. 10268–10278. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012. doi:
10.1109/IROS.2012.6386109.

Samuele Tosatto, Matteo Pirotta, Carlo D’Eramo, and Marcello Restelli. Boosted fitted q-iteration. In Doina
Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 3434–3443. PMLR, 06–11 Aug 2017. URL
https://proceedings.mlr.press/v70/tosatto17a.html.

Nilesh Tripuraneni, Michael Jordan, and Chi Jin. On the theory of transfer learning: The importance of
task diversity. Advances in Neural Information Processing Systems, 33:7852–7862, 2020.

Ruosong Wang, Dean P Foster, and Sham M Kakade. What are the statistical limits of offline rl with linear
function approximation? arXiv preprint arXiv:2010.11895, 2020.

13

https://openreview.net/forum?id=sS8rRmgAatA
https://openreview.net/forum?id=sS8rRmgAatA
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v70/tosatto17a.html

Published in Transactions on Machine Learning Research (01/2023)

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical
comparison. In Jonas Peters and David Sontag (eds.), Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning Research, pp. 550–559.
PMLR, 03–06 Aug 2020. URL https://proceedings.mlr.press/v124/xie20a.html.

Zihan Zhang, Xiangyang Ji, and Simon S. Du. Is reinforcement learning more difficult than bandits? a
near-optimal algorithm escaping the curse of horizon. arXiv preprint arXiv:2009.13503, 2020a.

Zihan Zhang, Yuan Zhou, and Xiangyang Ji. Almost optimal model-free reinforcement learning via reference-
advantage decomposition, 2020b.

Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and Zhenhui Li.
DRN: A deep reinforcement learning framework for news recommendation. In Pierre-Antoine Champin,
Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (eds.), Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pp. 167–176. ACM,
2018.

14

https://proceedings.mlr.press/v124/xie20a.html

Published in Transactions on Machine Learning Research (01/2023)

A Project Statement

All of our code and detailed results can be found at our project website, including installation and running
instructions for reproduciblity, and the results of individual games in Atari. The code is hosted at GitHub
under the MIT license. We believe that there is not any potential negative societal impact of this project.

All the environments are public accessible RL testbeds. For experiments with MuJoCo engine, we register
a free student license. For offline RL experiments, we conduct the experiments based on the codebase
and dataset at https://github.com/aviralkumar2907/CQL and https://github.com/google-research/
batch_rl, respectively, which are under Apache-2.0 license. We ensure that such a Atari game dataset does
not contain any personally identifiable information or offensive content. All experiments are run on machines
with 128 CPU cores, 256G memory, and one GTX 2080 GPU card.

B Algorithm Details

B.1 Deep Off-policy Reinforcement Learning:

Deep Q-learning (DQN) (Mnih et al., 2015) is perhaps the most popular off-policy RL algorithm leveraging
a deep neural network to approximate Q(x, a). Given the current state xh, the agent selects an action ah

greedily based on parameterized Q-function Qθ(xh, a) and maintain all the transition data in the replay
buffer.For each training step, the temporal difference error is minimized over a batch of transitions sampled
from this buffer by

L(θ) = E
[
(rh+1 + γmax

a′
Qθ̄(xh+1, a

′)−Qθ(xh, ah))2
]
, (5)

where θ̄ represents the parameters of the target Q-network, which is periodically updated from θ. Rain-
bow (Hessel et al., 2018) is perhaps the most famous DQN variant, which combines six algorithmic en-
hancements and achieves strong and stable performances on most Atari games. In this paper, we adopt a
deterministic version11 of Rainbow DQN as the RL algorithm for the discrete action domains. We also adopt
count-based exploration (Tang et al., 2017) as a deterministic exploration bonus.

For continuous action domains, soft actor-critic (SAC) (Haarnoja et al., 2018) is the representative off-policy
RL algorithm. SAC uses neural networks parameterized by θ to approximate both Q(s, a) and the stochastic
policy πθ(a|s). Q-network is trained to approximate entropy-regularized expected return by minimizing

LQ(θ) = E[(rh + γ(Qθ̄(xh+1, a
′)− α log π(a′|xh+1))

−Qθ(xh, ah))2|a′ ∼ π(·|xh+1)], (6)

where α is the entropy coefficient. We omit the parameterization of π since π is not updated w.r.t LQ. The
policy network πθ is trained to maximize Lπ(θ) = Ea∼π [Q(x, a)− α log πθ(a|x)].

B.2 Detailed switching criteria

We summarize the switching criteria mentioned in Sec. 3 at Algorithm 2.

C Experiment Details

C.1 Environments

GYMIC GYMIC is an OpenAI gym environment for simulating sepsis treatment for ICU patients to an
infection, where sepsis is caused by the body’s response to an infection and could be life-threatening. GYMIC
built an environment to simulate the MIMIC sepsis cohort, where MIMIC is an open patient EHR dataset
from ICU patients. This environment generates a sparse reward, the reward is set to +15 if the patient
recovered and -15 if the patient died. This environment has 46 clinical features and a 5× 5 action space.

11Standard Rainbow adds random noise to network parameters for exploration, which can be viewed as constantly switching
policies over a random network ensemble. This contradicts the low-switching-cost constraint.

15

https://github.com/aviralkumar2907/CQL
https://github.com/google-research/batch_rl
https://github.com/google-research/batch_rl

Published in Transactions on Machine Learning Research (01/2023)

Algorithm 2 Switching Criteria (J in Algorithm 1)
▷ Non-adaptive Switching
input environment step counter k, switching interval n
output bool(k mod n == 0)

▷ Policy-based Switching
input deployed and online policy πdep, πonl, state batch B, threshold σp

Compute the ratio of action difference or KL divergence for πdep and πonl on B as δ.
output bool(δ ≥ σp)

▷ Feature-based switching
input Encoder of deployed and online policy fdep, fonl, state batch B, threshold σf

Compute sim(B) via Eq.(3)
output bool(sim(B) ≤ σf)

▷ Visitation-based Switching
input the current visited times of state-action pair n(ϕ(xk), ak)
output bool(n(ϕ(xk), ak) ∈ {1, 2, 4, 8...})

▷ Information-matrix-based Switching
input episode timestep h, current covariance matrix Λe

h, old Λẽ
h at previous switch time

Compute the least absolute eigenvalues ve
h and vẽ

h

output bool(ve
h ≥ 2× vẽ

h)

Atari 2600 Atari 2600 games are widely employed to evaluate the performance of DQN based agents. We
evaluate the efficiency among different switching criteria on 56 games.

MuJoCo MuJoCo contains continuous control tasks running in a physics simulator, we evaluate different
switching criteria on 6 locomotion benchmarks.

For GYMIC and Atari games whose action space is discrete, we adopt Rainbow DQN to train the policy, for
MuJoCo tasks with continuous action spaces, we employ SAC since it is more suitable for continuous action
space.

C.2 Hyper-parameters of deterministic Rainbow

Table 2 lists the basic hyper-parameters of Rainbow. All of our experiments share these hyper-parameters
except that the experiments on GYMIC adopt Htarget = 1K. Most of these hyper-parameters are the same
as those in the original Rainbow algorithm. For count-based exploration, the bonus β is set to 0.01.

Table 3 lists the extra hyper-parameters for experiments on GYMIC. Since there are 46 clinical features in
this environment, we stack 4 consecutive states to compose a 184-dimensional vector as the input for the
state encoder. The state encoder is a 2-layer MLP with hidden size 128.

Table 4 shows the additional hyper-parameters for experiments on Atari games. The observations are grey-
scaled and resized to tensors with size 84× 84, and 4 consecutive frames are concatenated as a single state.
Each action selected by the agent is repeated for 4 times. The state encoder is composed of 3 convolutional
layers with 32, 64 and 64 channels, which use 8x8, 4x4, 3x3 filters and strides of 4, 2, 1, respectively.

C.3 Hyper-parameters of SAC

We list the hyper-parameters of SAC in Table 5. We adopt Adam as the optimizer, the learning rate is set
to 0.001 for MuJoCo control tasks except for Swimmer which is 0.0003, and the temperature parameter α
is set to 0.2 for Mujoco control tasks except for Humanoid which is 0.05. Other hyper-parameters are the

16

Published in Transactions on Machine Learning Research (01/2023)

Parameter Value
Hstart 20K
learning rate 0.0000625
Htarget(Atari) 8K
Htarget(GYMIC) 1K
Adam ϵ 1.5 × 10−4

Prioritization type proportional
Prioritization exponent ω 0.5
Prioritization importance sampling 0.4 −→ 1.0
Multi-step returns n 3
Distributional atoms Natoms 51
Distributional Vmin, Vmax [-10, 10]
Discount factor γ 0.99
Memory capacity N 1M
Replay period 4
Minibatch size 32
Reward clipping [-1, 1]
Count-base bonus 0.01
Activation function β ReLU

Table 2: The basic hyper-parameters of Rainbow. we used the Adam optimizer with learning rate α =
0.0000625 and ϵ = 1.5 × 10−4 . Before training the online policy, we let the initialized random policy run
20K steps to collect some transitions. The capacity of the replay buffer is 1M. During the training process,
we sample 32 transitions from the replay buffer and update the online policy every four steps. The reward
is clipped into [-1, 1] and ReLU is adopted as the activation function. For replay prioritization we use the
recommended proportional variant, with importance sampling from 0.4 to 1, the prioritization ω is set to 0.5.
In addition, we employ Natoms = 51, Vmin = −10, Vmax = 10 for distributional RL and n = 3 for multi-step
returns. The count-based bonus is set to 0.01.

Parameter Value
State Stacked 4
Number of layers for MLP 2
Hidden size 128

Table 3: Extra hype-parameters for the experiments in GYMIC, we stack 4 consecutive states and adopt a
2-layer MLP with hidden size 128 to extract the feature of states.

same for these tasks. The update frequency “50/50” means we perform 50 iterations to update the online
policy per 50 environment steps.

C.4 Hyper-parameters of different criteria

For the switching threshold in policy-based and feature-based criteria (i.e., the mismatch ratio σp in policy-
based criterion and parameter σf in feature-based criterion), we perform a rough grid search and choose the
highest possible threshold that still produces a comparable final policy reward. For GYMIC, we tried σp ∈
{0.25, 0.5} and σf ∈ {0.97, 0.98, 0.99} and finally adopted σp = 0.5 and σf = 0.97. For Atari games, we tried
σp ∈ {0.25, 0.5} and σf ∈ {0.98, 0.99}. For MuJoCo, we tried σp ∈ {0.5, 1.0, 1.5}12 and σf ∈ {0.7, 0.8, 0.9}

12{0.5, 1.0, 1.5} is the thresholds of KL.

17

Published in Transactions on Machine Learning Research (01/2023)

Parameter Value
Gray scaling True
Observation (84, 84)
Frame Stacked 4
Action repetitions 4
Max frames per episode 108k
Encoder channels 32, 64, 64
Encoder filter size 8× 8, 4× 4, 3× 3
Encoder stride 4, 2, 1

Table 4: Additional hyper-parameters for experiments in Atari games. Observations are grey-scaled and
rescaled to 84× 84. 4 consecutive frames are staked as the state and each action is acted for four times. We
limit the max number of frames in an episode to 108K. The state encoder consists of 3 convolutional layers.

Parameter Value
Warm-up samples 10K
Learning rate 0.001
Optimizer Adam
Temperature parameter α 0.2
Discount factor γ 0.99
Memory capacity N 1M
Number of hidden layers 2
Number of hidden nodes per layer 256
Target smoothing coefficient 0.005
Update frequency 50/50
Target update interval 1
Minibatch size 128
Activation function ReLU

Table 5: Hyper-parameters of SAC algorithms on MuJoCo control tasks.

D Discussion on RSI

D.1 RSI without log function

We choose log function because we observe that switching costs of different criteria vary in orders of magni-
tudes. We also tried a variant of RSI that removes the log function, which is

I

[
RJ >

(
1− sign(R̂)σRSI

)
R̂
](

max
(
Ĉ

CJ
, 1
))

, (7)

The results are shown in the following Table 6 (σRSI = 0.2). We think these numbers have exaggerated the
differences among different criteria and we finally adopt the log function.

Feature Policy Info Visitation Fix_1000
GYMIC 10943 51 4408 1 1000

Atari 1028 184 93 57 643
MuJoCo 10826 136 128 10 833

Table 6: The results of RSI variant that removes the log function, the results exaggerate the differences
among different criteria.

18

Published in Transactions on Machine Learning Research (01/2023)

D.2 Evaluate RSI with different σRSI

we evaluate RSI using different σRSI , and list the results in Table 7. Since the rewards obtained by different
criteria on GYMIC are almost the same, RSI remains mostly unchanged when using different σRSI . The only
exception is when σRSI = 0. In this case, RSI of “Feature” and “Info” become 0. This is because a positive
RSI requires strictly better or equal reward performance than “None” criterion when σRSI = 0. For Atari
and MuJoCo, the overall trend is that a larger σRSI results in a larger RSI, since a larger σRSI tolerates a
wider performance range. And we can observe that for most σRSI , the conclusions remain unchanged.

GYMIC

σRSI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Feature 0.0 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30
Policy 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93 3.93
Info 0.0 8.39 8.39 8.39 8.39 8.39 8.39 8.39 8.39 8.39

Visitation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FIX_1000 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91 6.91

Atari

RSI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Feature 1.68 3.06 4.00 3.90 4.50 4.70 5.02 5.13 5.42 5.54
Policy 1.60 2.74 3.22 3.66 4.15 4.50 4.81 4.81 4.81 4.88
Info 0.81 1.65 2.33 3.14 3.62 3.84 4.01 4.17 4.36 4.45

Visitation 0.84 1.14 1.83 2.02 2.11 2.11 2.17 2.17 2.17 2.25
FIX_1000 1.87 2.96 3.25 4.24 4.63 4.83 4.93 4.93 5.03 5.13

MuJoCo

RSI 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Feature 2.55 7.66 8.26 8.26 8.26 8.26 8.26 8.26 8.26 8.26
Policy 2.64 4.25 5.26 6.01 6.01 6.01 6.01 6.01 6.01 6.01
Info 2.96 4.53 4.69 4.83 4.83 4.83 4.83 4.83 4.83 4.83

Visitation 1.23 1.86 1.90 1.94 1.94 1.94 1.94 1.94 1.94 1.94
FIX_1000 4.60 6.22 6.68 6.91 6.91 6.91 6.91 6.91 6.91 6.91

Table 7: The RSI of different σRSI

E Proof of Theorem 1

Proof. We let w = (1, 1, . . . , 1) ∈ Rk be a k-dimensional all one vector. We let

F = {f : f(x) = (2σ(⟨v1, x⟩)− 1, 2σ(⟨v2, x⟩)− 1, . . . ,
2σ(⟨vk, x⟩)− 1)} ⊂ {Rk → Rk}

with σ(·) being the ReLU activation function13 and vi ∈ {ei,−ei} where ei ∈ Rk denotes the vector
that only the i-th coordinate is 1 and others are 0. We assume k is an even number and αk is an
integer for simplicity. We let the underlying f∗ be the vector correspond to (e1, e2, . . . , ek). We let
D1 = {(e1, 1), (e2, 1), . . . , (e(1−α)k, 1)} and D2 = {(e(1−α)k+1, 1), . . . , (ek, 1)}. Because we use the ERM
training scheme, it is clear that the training on D1 ∪ D2 will recover f∗, i.e., f1+2 = f∗ because if it is not
f∗ is better solution (f∗ has 0 error) for the empirical risk. Now if the similarity score between f1 and f1+2

is smaller than α, it means for f1, its corresponding {v(1−α)k+1, . . . , vk} are not correct. In this case, f1’s
prediction error is at least 1− α on D1 ∪ D2, because it will predict 0 on all inputs of D2.

13We define σ(0) = 0.5

19

	Introduction
	Related Work
	Reinforcement Learning with Low Switching Cost
	Notation
	Switching via Information Gain
	Other Switching Criteria
	Implementation

	Experiments
	Evaluation Metric
	Results
	Findings and Suggestions

	Conclusion
	Project Statement
	Algorithm Details
	Deep Off-policy Reinforcement Learning:
	Detailed switching criteria

	Experiment Details
	Environments
	Hyper-parameters of deterministic Rainbow
	Hyper-parameters of SAC
	Hyper-parameters of different criteria

	Discussion on RSI
	RSI without log function
	Evaluate RSI with different RSI

	Proof of Theorem 1

